Advertisement

Construction of Spin Eigenfunctions by the Projection Operator Method

  • Ruben Pauncz

Abstract

The common property of the methods presented in the previous chapters is that we use a building-up procedure. From the knowledge of the spin eigenfunctions for the smaller systems we construct eigenfunction of the composite system by the use of the addition theorem of angular momenta and the appropriate Clebsch-Gordan, or vector-coupling coefficients. In each case one can associate a definite spin coupling with the construction and it can be characterized by a certain diagram, or by a suitable symbol. The functions obtained in this way form an orthonormal system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. O. Löwdin, Phys. Rev. 97, 1509 (1956).CrossRefGoogle Scholar
  2. 2.
    P. O. Löwdin, Rev. Mod. Phys. 36, 966 (1964);CrossRefGoogle Scholar
  3. 2a.
    P. O. Löwdin, in: Calcul des Fonctions d’Onde Moléculaire, Centre National de la Recherche Scientifique, Paris, (1958), p. 23.Google Scholar
  4. 3.
    Z. Gershgorn, Int. J. Quantum Chem. 2, 341 (1968).CrossRefGoogle Scholar
  5. 4.
    R. Pauncz, Int. J. Quantum Chem. 12, 369 (1977).CrossRefGoogle Scholar
  6. 5.
    P. O. Löwdin, Adv. Phys. 5, 1 (1956).CrossRefGoogle Scholar
  7. 6.
    F. Sasaki and K. Ohno, J. Math. Phys. 4, 1140 (1963).CrossRefGoogle Scholar
  8. 7.
    R. Pauncz, Alternant Molecular Orbital Method, Saunders, Philadelphia (1967), p. 34.Google Scholar
  9. 8.
    E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York (1959), p. 152.Google Scholar
  10. 9.
    E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York (1959), p. 167.Google Scholar
  11. 10.
    E. P. Wigner, Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra, Academic Press, New York (1959), p. 160.Google Scholar
  12. 11.
    J. K. Percus and A. Rotenberg, J. Math. Phys. 3, 928 (1962).CrossRefGoogle Scholar
  13. 12.
    V. H. Smith Jr., J. Chem. Phys. 41, 277 (1964).CrossRefGoogle Scholar
  14. 13.
    V. H. Smith Jr. and F. E. Harris, J. Math. Phys. 10 771 (1969).CrossRefGoogle Scholar
  15. 14.
    R. Manne, Theor. Chim. Acta 6, 116 (1966).CrossRefGoogle Scholar
  16. 15.
    J. E. Harriman, J. Chem. Phys. 40, 2827 (1964).CrossRefGoogle Scholar
  17. 16.
    N. Karayianis and C. A. Morrison, J. Math. Phys. 6, 876 (1965).CrossRefGoogle Scholar
  18. 17.
    R. Pauncz, Chem. Phys. Lett. 46, 422 (1977).CrossRefGoogle Scholar
  19. 18.
    P. J. Carrington and G. Doggett, Mol. Phys. 30, 49 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Ruben Pauncz
    • 1
  1. 1.Technion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations