Advertisement

Spin-Free Quantum Chemistry

  • Ruben Pauncz

Abstract

In the treatment given so far we have started with the spin functions and outlined the different methods for their construction. In the second step we have built up the total electronic wave function out of spatial functions and spin eigenfunctions in such a way that it satisfies the antisymmetry principle. So far we have used spin-free Hamiltonians and we observed that the final expressions of the expectation values of the Hamiltonian contain integrals of the Hamiltonian over the spatial functions and the matrix elements of permutations over the spin functions.

Keywords

Irreducible Representation Symmetric Group Group Algebra Spatial Function Invariance Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. H. van Vleck and A. Sherman, Rev. Mod. Phys. 7, 167 (1935).CrossRefGoogle Scholar
  2. 2.
    F. A. Matsen, in Group Theory and Applications, Vol. 3, Ed. E. M. Loebl, Academic Press, New York (1975), p. 143.Google Scholar
  3. 3.
    P. A. M. Dirac, Proc. R. Soc. London B 112, 661 (1926).CrossRefGoogle Scholar
  4. 4.
    W. Pauli, Z. Phys. 31, 765 (1925).CrossRefGoogle Scholar
  5. 5.
    P.-O. Löwdin and O. Goscinski, Int. J. Quantum Chem. 3S, 533 (1970).Google Scholar
  6. 6.
    H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, New York (1933).Google Scholar
  7. 7.
    E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York (1959).Google Scholar
  8. 8.
    T. Yamanouchi, Proc. Phys. Math. Soc. Jpn. 20, 547 (1938).Google Scholar
  9. 9.
    M. Kotani, in: Colloque sur le Calcul des Fonctions d’Onde Moléculaire, Centre National de la Recherche Scientifique, Paris (1958), p. 37.Google Scholar
  10. 10.
    F. A. Matsen, C R. Acad. Sci. 254, 2298 (1962).Google Scholar
  11. 11.
    F. A. Matsen and A. A. Cantu, J. Phys. Chem. 73, 2488 (1969).CrossRefGoogle Scholar
  12. 12.
    F. D. Murnaghan, The Theory of Group Representations, Johns Hopkins University Press, Baltimore (1938), p. 94.Google Scholar
  13. 13.
    F. A. Matsen and R. D. Poshusta, in: Théorie des Groupes en Physique Classique et Quantique, Ed. Th. Kahan, Vol. 3, Dunod, Paris (1965).Google Scholar
  14. 14.
    R. D. Poshusta and R. W. Kramling, Phys. Rev. 167, 139 (1968).CrossRefGoogle Scholar
  15. 15.
    A. A. Cantu, Mol. Phys. 19, 11.(1970).CrossRefGoogle Scholar
  16. 16.
    W. A. Goddard HI. Phys. Rev. 157, 73, 81 (1967);CrossRefGoogle Scholar
  17. 16a.
    W. A. Goddard J. Chem. Phys. 48,450, 5337 (1968);CrossRefGoogle Scholar
  18. 16b.
    W. A. Goddard J. Chem. Phys. 51, 1073 (1969).CrossRefGoogle Scholar
  19. 17.
    T. K. Lim, Int. J. Quantum Chem. 9, 981 (1975);CrossRefGoogle Scholar
  20. 17a.
    T. K. Lim, Int. J. Quantum Chem. 10, 299 (1976);CrossRefGoogle Scholar
  21. 17b.
    T. K. Lim, Int. J. Quantum Chem. 11, 341 (1977).CrossRefGoogle Scholar
  22. 18.
    F. A. Matsen, A. A. Cantu, and R. D. Poshusta, J. Phys. Chem. 70, 1558 (1966).CrossRefGoogle Scholar
  23. 19.
    F. A. Matsen, Adv. Quantum Chem. 1, 59 (1964).CrossRefGoogle Scholar
  24. 20.
    F. A. Matsen, A. A. Cantu, and R. D. Poshusta, J. Phys. Chem. 70, 1558 (1966), Sec. 4.Google Scholar
  25. 21.
    D. J. Klein and B. R. Junker, J. Chem. Phys. 54, 4290 (1971).CrossRefGoogle Scholar
  26. 22.
    B. R. Junker and D. J. Klein, J. Chem. Phys. 55, 5532 (1971).CrossRefGoogle Scholar
  27. 23.
    R. W. J. Roel, Group Theoretical Methods in Physics, Eds. A. Janner et al, Springer Verlag, Berlin (1976), p. 276; Dissertation, Amsterdam, 1976.Google Scholar
  28. 24.
    G. Heldmann, Int. J. Quantum Chem. 2, 785 (1968).CrossRefGoogle Scholar
  29. 25.
    L. Pauling, J. Chem. Phys. 1, 280 (1933).CrossRefGoogle Scholar
  30. 26.
    G. A. Gallup, J. Chem. Phys. 48, 1752 (1968);CrossRefGoogle Scholar
  31. 26a.
    G. A. Gallup, J. Chem. Phys. 50, 1206 (1969);CrossRefGoogle Scholar
  32. 26b.
    G. A. Gallup Int. J. Quantum Chem. 6, 761 (1972).CrossRefGoogle Scholar
  33. 27.
    G. A. Gallup, Adv. Quantum Chem. 7, 113 (1973).CrossRefGoogle Scholar
  34. 28.
    J. J. Sullivan, J. Math. Phys. 9, 1369 (1968);CrossRefGoogle Scholar
  35. 28a.
    J. J. Sullivan Phys. Rev. 5, 29 (1972).CrossRefGoogle Scholar
  36. 29.
    D. J. Klein, R. D. Poshusta, B. R. Junker, and F. A. Matsen, Int. J. Quantum Chem. 4S, 141 (1971).Google Scholar
  37. 30.
    F. Sasaki, Phys. Rev. 138B, 1338 (1965).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Ruben Pauncz
    • 1
  1. 1.Technion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations