Advertisement

The Chemistry of the Fe-M-S Complexes (M = Mo, W)

  • Dimitri Coucouvanis

Abstract

In nitrogen-fixing organisms, the catalytic reduction of N2 to ammonia is carried out by the molybdoenzymes generally referred to as nitrogenases. These nitrogen-fixing enzymes consist of two protein components, the Mo-Fe protein and the Fe protein. The former contains ~30 iron atoms, roughly equal amounts of acid-labile sulfur and 1–2 molybdenum atoms per 200,000 to 230,000 M.W., while the latter contains approximately 4Fe and 4S2- per 55,000 to 65,000 M.W.1–3 Evidence for the involvement of metals in nitrogen fixation has been provided by the following observations: a) nutritional requirements for additional Fe and Mo for growth on N2 versus fixed N;4,5 b) removal of Fe and Mo results in loss of activity;” and c) alteration of substrate affinities, changes in rates, product mixtures and electron allocation in vanadium-substituted nitrogenase compared with the natural molybdoenzyme.6

Keywords

Iron Atom Polynuclear Complex Molybdenum Atom Formal Oxidation State Clostridium Pasteurianum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. R. Eady and B. E. Smith, Physico-Chemical Properties of Nitrogenase and its Components, in: “A Treatise on Dinitrogen Fixation,” R. W. F. Hardy, F. Bottomley and R. C. Burns, eds., Wiley-Interscience, New York, Sections I and II, p. 399 (1979).Google Scholar
  2. 2.
    W. H. Orme-Johnson and L. C. Davis, Current Topics and Problems in the Enzymology of Nitrogenase, in: “Iron-Sulfur Proteins,” W. Lovenberg, ed., Academic Press, New York, Vol. 3, p. 15 (1977).Google Scholar
  3. 3.
    E. I. Stiefel, The Coordination and Bioinorganic Chemistry of Molybdenum, in: “Progress in Inorganic Chemistry,” S. Lippard, ed., John Wiley and Sons, New York. Vol. 22, p. 1 (1977).CrossRefGoogle Scholar
  4. 4.
    H. J. Evans and S. A. Russell, Physiological Chemistry of Symbiotic Nitrogen Fixation by Legumes, in: “The Chemistry and Biochemistry of Nitrogen Fixation,” J. R. Postgate, ed., Plenum Press, London, p. 106 (1971).Google Scholar
  5. 5.
    R. W. F. Hardy and E. Knight Jr., Biochemistry and Postulated Mechanisms of Nitrogen Fixation, in: “Progress in Phyto-chemistry,” L. Reinhold and Y. Liwschitz, eds., John Wiley and Sons, London, p. 407 (1968).Google Scholar
  6. 6.
    R. W. F. Hardy, R. C. Burns and G. W. Parshall, Bioinorganic Chemistry of Dinitrogen Fixation, in: “Inorganic Biochemistry,” G. L. Eichorn, ed., Elsevier, Amsterdam, Vol. 2, p. 745 (1973).Google Scholar
  7. 7.
    V. K. Shah and W. J. Brill, Isolation of an Iron-Molybdenum Cofactor from Nitrogenase, Proc. Natl. Acad. Sci. USA 74:3249 (1977).PubMedCrossRefGoogle Scholar
  8. 8.
    B. E. Smith, Studies of the Iron-Molybdenum Cofactor from the Nitrogenase Mo-Fe Protein of Klebsiella pneumoniae, in: “Molybdenum Chemistry of Biological Significance,” W. E. Newton and S. Otsuka, eds., Plenum Press, N.Y., p. 179 (1980).CrossRefGoogle Scholar
  9. 9.
    W. E. Newton, B. K. Burgess and E. I. Stiefel, Chemical Properties of the Fe-Mo Cofactor from Nitrogenase, in: “Molybdenum Chemistry of Biological Significance, W. E. Newton and S. Otsuka, eds., Plenum Press, New York, p. 191 (1980).CrossRefGoogle Scholar
  10. 10.
    W. H. Orme-Johnson, N. R. Orme-Johnson, L. Touton, M. Emptage, M. Henzl, J. Rawlings, K. Jacobson, J. P. Smith, W. B. Mims, B. H. Huynh, E. Münck, and G. S. Jacob, Spectroscopic and Chemical Evidence for the Nature and Role of Metal Centers in Nitrogenase and Nitrate Reductase, in: “Molybdenum Chemistry of Biological Significance,” W. E. Newton and S. Otsuka, eds., Plenum Press, New York, p. 85 (1979) and references therein.Google Scholar
  11. 11.
    E. Münck, H. Rhodes, W. H. Orme-Johnson, L. C. Davis, W. J. Brill and V. K. Shah, Nitrogenase VIII. Mössbauer and EPR Spectroscopy. The MbFe Protein Component from Azotobacter vinelandii OP, Biochim. Biophys. Acta 400:32 (1975) and references therein.PubMedGoogle Scholar
  12. 12.
    B. H. Huynh, E. Münck and W. H. Orme-Johnson, Nitrogenase. XI. Mössbauer Studies on the Cofactor Centers of the MoFe Protein of A. vinelandii OP, Biochim. Biophys. Acta 576:192 (1979).PubMedGoogle Scholar
  13. 13.
    J. Rawlings, V. K. Shah, J. R. Chisnell, W. J. Brill, R. Zimmerman, E. Münck, and W. H. Orme-Johnson, Novel Metal Cluster in the Iron-Molybdenum Cofactor of Nitrogenase, J. Biol. Chem. 253:1001 (1978).PubMedGoogle Scholar
  14. 14.
    S. P. Cramer, W. O. Gillum, K. O. Hodgson, L. E. Mortenson, E. I. Stiefel, J. R. Chisnell, W. J. Brill and V. K. Shah, The Molybdenum Site of Nitrogenase. 2. A Comparative Study of Mo-Fe Proteins and the Iron-Molybdenum Cofactor by X-ray Absorption Spectroscopy, J. Am. Chem. Soc. 100:3814 (1978), and references therein.CrossRefGoogle Scholar
  15. 15.
    T. E. Wolff, J. M. Berg, C. Warrick, K. O. Hodgson, R. H. Holm, and R. B. Frankel, The Molybdenum-Iron-Sulfur Clusters Complex [Mo2Fe6S9(SC2H5)8]3-. A Synthetic Approach to the Molybdenum Site of Nitrogenase, J. Am. Chem. Soc. 100:4630 (1978).CrossRefGoogle Scholar
  16. 16.
    S. P. Cramer, K. O. Hodgson, W. O. Gillum and L. E. Mortenson, The Molybdenum Site of Nitrogenase. Preliminary Structural Evidence from X-ray Absorption Spectroscopy, J. Am. Chem. Soc. 100:3398 (1978).CrossRefGoogle Scholar
  17. 17.
    W. G. Zumft, Isolation of Thiomolybdate Compounds from the Molybdenum-Iron Protein of Clostridial Nitrogenase, Eur. J. Biochem. 91:354 (1978).CrossRefGoogle Scholar
  18. 18.
    L. Que, Jr., R. H. Holm and L. E. Mortenson, Extrusion of Fe2S2* and Fe4S4* Cores from the Active Sites of Ferredoxin Proteins, J. Am. Chem. Soc. 97:463 (1975).PubMedCrossRefGoogle Scholar
  19. 19.
    D. L. Erbes, R. H. Burris and W. H. Orme-Johnson, On the Iron- Sulfur Cluster in Hydrogenase from Clostridium pasteurianum W5, Proc. Natl. Acad. Sci. USA 72:4795 (1975).PubMedCrossRefGoogle Scholar
  20. 20.
    T. E. Wolff, J. M. Berg, P. P. Power, K. O. Hodgson, R. H. Holm and R. B. Frankel, Self Assembly of Molybdenum-Iron-Sulfur Clusters as a Synthetic Approach to the Molybenum Site in Nitrogenase. Identification of the Major Products Formed by the System FeCl3/MS4 2-/C2H5SH (M = Mo, W), J. Am. Chem. Soc. 101:5454 (1979).CrossRefGoogle Scholar
  21. 21.
    D. Coucouvanis, P. Stremple and E. Simhon, unpublished results.Google Scholar
  22. 22.
    A. Müller, S. Sarkar, A. M. Dommrose and R. Filgueira, Nachweis eines doppelt verbrückenden MoS4 2--Liganden zwischen Fe-Zentren mit dem Resonanz-Raman-Effekt und einfache Darstellung von [(C6H4)4P]2[Cl2FeS2MoS2FeCl2], Z. Naturforsch. 35b:1592 (1980).Google Scholar
  23. 23.
    A. Müller, R. Jostes, H. G. Tölle, A. Trautwein and E. Bill, On the Electronic Structure of Compounds with FeSMo Units. Properties of [Cl2FeS2MoS2]2-, Inorg. Chim. Acta 46:L121 (1980).CrossRefGoogle Scholar
  24. 24.
    H. C. Silvis, R. H. Tieckelmann and B. A. Averill, Preparation and Properties of the Tetrakis[tetrathiomolybdato(VI)-μ3- sulfidoiron] cluster, [Fe4Mo4S20]6-, Inorg. Chim. Acta 36:L423 (1979).CrossRefGoogle Scholar
  25. 25.
    A. Miller, E. Ahlborn and H. H. Heinsen, M0S42- and WSe4 2-Ionen als Liganden in Übergangsmetallkomplexen, Z. Anorg. Allg. Chenu 386:102 (1971).CrossRefGoogle Scholar
  26. 26.
    A. Müller and S. Sarkar, Thioheteroanions — Unusual Metal-Ligand Interaction and Reactions, Angew. Chem. Int. Ed. Engl. 16:705 (1977).CrossRefGoogle Scholar
  27. 27.
    E. Diemann and A. Müller, Thio- and Seleno- Compounds of the Transition Metals with the d° Configuration, Coord. Chem. Rev. 10:79 (1973).CrossRefGoogle Scholar
  28. 28.
    D. Coucouvanis, E. D. Smihon and N. C. Baenziger, Successful Isolation of a Reduced Tetrathiometállate Complex. Synthesis and Structural Characterization of the [(MoS4)2Fe]3-Trianion, J. Am. Chem. Soc. 102:6644 (1980).CrossRefGoogle Scholar
  29. 29.
    J. W. McDonald, G. D. Friesen and W. E. Newton, Synthesis and Characterization of [Et4N]3[Fe(MoS4)2]. A New Fe-Mo-S Complex, Inorg. Chim. Acta 46:L79 (1980).CrossRefGoogle Scholar
  30. 30.
    P. Stremple, N. C. Baenziger and D. Coucouvanis, unpublished results.Google Scholar
  31. 31.
    D. Coucouvanis, E. D. Simhon, D. Swenson and N. C. Baenziger, X-Ray Crystal Structure of Bis(tetrathylammonium) Di-μ-thio-[bis(phenylthio)-ferrate(III)-dithiomolybdate(V)], [Et4N]2 [(PhS)2FeMoS4]: A Dinuclear Complex with the FeMoS2 Core, J. Chem. Soc., Chem. Commun. 361 (1979).Google Scholar
  32. 32.
    R. H. Tieckelmann, H. C. Silvis, T. A. Kent, B. H. Huynh, J. V. Waszczak, B. K. Teo and B. A. Averill, Synthetic Molybdenum-Iron-Sulfur Clusters. Preparation, Structures, and Properties of the [S2MoS2Fe(SC6H5)2]2- and [S2MoS2FeCl2]2-Ions, J. Am. Chem. Soc. 102:5550 (1980).CrossRefGoogle Scholar
  33. 33.
    D. Coucouvanis, N. C. Baenziger, E. D. Simhon, P. Stremple, D. Swenson, A. Kostikas, A. Simopoulos, V. Petrouleas and V. Papaefthymiou, Synthesis and Structural Characterization of the [Ph4P]4[Cl2FeS2MS2FeCl2] Complexes (M = Mo, W). First Example of a Doubly Bridging M0S4 Unit and its Possible Relevance as a Structural Feature in the Nitrogenase Active Site, J. Am. Chem. Soc. 102:1732 (1980).CrossRefGoogle Scholar
  34. 34.
    A. Müller, H. G. Tölle and H. Bögge, Darstellung und Kristallstruktur von Verbindungen mit den Komplexen Anionen [Cl2FeS2MoS2]2- und [Cl2FeS2WS2]2-, Z. Anorg. Allg. Chem. 471:115 (1980).CrossRefGoogle Scholar
  35. 35.
    D. Coucouvanis, D. Swenson, P. Stremple and N. C. Baenziger, Reaction of [Fe(SC6H5)4]2- with Organic Trisulfides and Implications Concerning the Biosynthesis of Ferredoxins. Synthesis and Structure of the [(C6H5)4P]2Fe2S12 Complex, J. Am. Chem. Soc. 101:3392 (1979).CrossRefGoogle Scholar
  36. 36.
    D. Coucouvanis, N. C. Baenziger, E. D. Simhon, P. Stremple, D. Swenson, A. Kostikas, A. Simopoulos, V. Petrouleas and V. Papaefthymiou, Heterodinuclear Di-μ-Sulfido Bridged Dimers Containing Iron and Molybdenum or Tungsten. Structures of (PhP)4(FeMS9) Complexes (M = Mo, W), J. Am. Chem. Soc. 102:1730 (1980).CrossRefGoogle Scholar
  37. 37.
    A. Balasubramaniam and D. Coucouvanis, unpublished results.Google Scholar
  38. 38.
    G. Christou, B. Ridge and H. N. Rydon, Direct Formation of Peptide Analogues of Rubredoxins and Four-Iron Ferredoxins from Their Components, J. Chem. Soc., Chem. Commun. 908 (1977).Google Scholar
  39. 39.
    J. R. Anglin and A. Davison, Iron(II) and Cobalt(II) Complexes of Boc-(Gly-L-Cys-Gly)4-NH2 as Analogs for the Active Site of the Iron-Sulfur Protein Rubredoxin, Inorg. Chem. 14:234 (1975).CrossRefGoogle Scholar
  40. 40.
    R. J. Burt, B. Ridge and H. N. Rydon, Studies Relating to the Ferredoxins. Part 2. Exchange Reactions of Some Cysteine-Glycine Peptides with the Iron-Sulfur Cluster Compound Bis(tetramethylammonium) Tetrakis(μ3-sulfido-t-butylthio-iron), J. Chem. Soc. (Dalton) 1228 (1980).Google Scholar
  41. 41.
    J. J. Mayerle, S. E. Denmark, B. V. De Pamphilis, J. A. Ibers and R. H. Holm, Synthetic Analogs of the Active Sites of Iron-Sulfur Porteins. XI. Synthesis and Properties of Complexes Containing the Fe2S2 Core and the Structures of Bis[o-xylyl-α,α-dithiolato-y-sulfido-ferrate(III)] and Bis[p-tolythiolato-μ-sulfido-ferrate(III)] Dianions, J. Am. Chem. Soc. 97:1032 (1975).CrossRefGoogle Scholar
  42. 42.
    R. H. Tieckelmann and B. A. Averill, Preparation and Properties of the Bis(phenylmercapto)iron(III)-di-y-sulfidoiron(II)-di-μ-sulfidodisulfidomolybdate(VI) Ion, [(PhS)2FeS2FeS2 MoS2]3-, Inorg. Chim. Acta 46:L35 (1980).CrossRefGoogle Scholar
  43. 43.
    R. H. Holm and J. A. Ibers, Synthetic Analogues of the Active Sites of Iron-Sulfur Proteins, in: “Iron-Sulfur Proteins,” W. Lovenberg, ed., Academic Press, New York, Vol. 3, p. 206 (1977).Google Scholar
  44. 44.
    T. E. Wolff, P. P. Power, R. B. Frankel and R. H. Holm, Synthesis and Electronic and Redox Properties of “Double-Cu-bane” Cluster Complexes Containing MoFe3S4 and WFe3S4 Cores, J. Am. Chem. Soc. 102:4694 (1980).CrossRefGoogle Scholar
  45. 45.
    G. Christou, C. D. Garner, F. E. Mabbs, and T. J. King, Crystal Structure of Tris(tetrabutylammonium) tri-μ-benzenthiolato-bis{tris-μ-sulfido-[μ3-sulfido-tris(benzenethiolatoiron)] molybdenum}[Bun4N]3[{(PhSFe)3MoS4}2(SPh)3]; an Fe3MoS4 Cubic Cluster Dimer, J. Chem. Soc., Chem. Commun. 740 (1978).Google Scholar
  46. 46.
    G. Christou, C. D. Garner, F. E. Mabbs and M. G. B. Drew, Thiol Exchange Reactions of Iron-Molybdenum-Sulfur Clusters; Preparation and X-ray Crystal Structure of [Et4N]3[Fe6Mo2S8 (SCH2CH2OH)9], A Water Soluble Iron-Molybdenum-Sulfur Cluster, J. Chem. Soc., Chem. Commun. 91 (1979).Google Scholar
  47. 47.
    S. R. Acott, G. Christou, C. D. Garner, T. J. King, F. E. Mabbs and R. M. Miller, Isolation and Crystal Structure of [Et4N]3[Fe6Mo2S8(SEt)9], Inorg. Chim. Acta 35:L337 (1979).CrossRefGoogle Scholar
  48. 48.
    G. Christou, C. D. Garner, T. J. King, C. E. Johnson and J. D. Rush, Isolation and Characterization by X-ray Crystallography and Mössbauer Measurements of [NEt4]3[Fe6W2S8(SPh)6(OMe)3], an Iron-Tungsten-Sulfur Cubic Cluster Dimer, J. Chem. Soc. Chenu Commun. 503 (1979).Google Scholar
  49. 49.
    T. E. Wolff, J. M. Berg, P. P. Power, K. O. Hodgson and R. H. Holm, Structural Characterization of the Iron-Bridged “Double-Cubane” Cluster Complexes [Mo2Fe7S8(SC2H5)12]3- and [M2Fe7S8(SCH2C6H5)12]4- (M = Mo, W) Containing MFe3S4 Cores, Inorg. Chem. 19:430 (1980).CrossRefGoogle Scholar
  50. 50.
    T. E. Wolff, J. M. Berg and R. H. Holm, Synthesis, Structure and Properties of the Cluster Complex [MoFe4S4(SC2H5)3 (C6H4O2)3]3-, Containing a Single Cubane-Type MbFe3S4 Core, Inorg. Chem. 20:174 (1981).CrossRefGoogle Scholar
  51. 51.
    G. Christou and C. D. Garner, Ligand Substitution Reactions of Iron-Molybdenum-Sulfur Cubane-Like Cluster Dimers; Selective Halide Incorporation, J. Chem. Soc., Chem. Commun. 613 (1980).Google Scholar
  52. 52.
    D. Coucouvanis, D. Swenson, N. C. Baenziger, D. G. Holah, A. Kostikas, A. Simopoulos and V. Petrouleas, The Crystal and Molecular Structures of [(C6H5)4P]2 Fe(S2C4O2)2 and [(C6H5)4 P]2 Fe(SC6H5)4, a Structural Analogue of Reduced Rubredoxin, J. Am. Chem. Soc. 98:5721 (1976); D. Coucouvanis, D. Swenson, N. C. Baenziger, C. Murphy, D. G. Holah, N. Sfarnas, A. Simopoulos, and A. Kostikas, unpublished results.PubMedCrossRefGoogle Scholar
  53. 53.
    P. Stremple, N. C. Baenziger and D. Coucouvanis, unpublished results.Google Scholar
  54. 54.
    A. Müller, H. G. Tölle and H. Bögge, Darstellung und Kristallstructur von Verbindungen mit dem Komplexen Anionen [Cl2FeS2MoS2]2- und [Cl2FeS2WS2]2-, Z. Anorg. Allg. Chem. 471:115 (1980).CrossRefGoogle Scholar
  55. 55.
    D. Coucouvanis, E. D. Simhon, P. Stremple and N. C. Baenziger, Synthesis and Structural Characterization of [(NO)2FeS2 MoS2]2- a Dinitrosyl Complex Containing the FeS2MoS2 Core, Inorg. Chim. Acta 53:L135 (1981).CrossRefGoogle Scholar
  56. 56.
    T. S. Cameron and C. K. Prout, The Crystal and Molecular Structure of (π-C5H5)2Mo(SBu n)2FeCl2, a Model Compound of the Nitrogenase System, Acta Cryst. B28:453 (1972).Google Scholar
  57. 57.
    T. E. Wolff, J. M. Berg, K. O. Hodgson, R. B. Frankel and R. H. Holm, Synthetic Approaches to the Molybdenum Site in Nitrogenase. Preparation and Structural Properties of the Moly-bdenum-Iron-Sulfur “Double-Cubane” Cluster Complexes [Mo2Fe6Sa(SC2H5)9]3- and [Mb2Fe6S9(SC2H5)8]3-, J. Am . Chem. Soc. 101:4140 (1979).CrossRefGoogle Scholar
  58. 58.
    G. Christou, C. D. Garner, R. M. Miller, and T. J. King, Preparation and Crystal Structure of [NEt4]3[Fe6W2S8(SEt)9]; Structural and Electrochemical Comparison with its Molybdenum Analogue, J. Inorg. Biochem. 11:349 (1979).CrossRefGoogle Scholar
  59. 59.
    D. A. Koz’min and Z. V. Popova, Crystal Structure of Piperazine Thiomolybdate MbS4(C4H2H12), Zh. Struct. Khim. 12:99 (1971).Google Scholar
  60. 60.
    K. Sasvari, The Crystal Structure of Ammonium Thiotungstate, (NH4)2WS4, Acta Crystallogr. 16:719 (1963).CrossRefGoogle Scholar
  61. 61.
    I. Paulat-Böschen, B. Krebs, A. Müller, E. Königer-Ahlborn, H. Dornfeld and H. Schulz, Structure and Vibrational Spectrum of Bis(tetrathiotungstato)zineate(II), [Zn(WS4)2]2-, Inorg. Chem. 17:1440 (1978).CrossRefGoogle Scholar
  62. 62.
    P. G. Debrunner, E. Münck, L. Que and C. E. Schulz, Recent Mössbauer Results of Some Iron-Sulfur Proteins and Model Complexes, in: “Iron-Sulfur Proteins,” W. Lovenberg, ed., Academic Press, New York, Vol. 3, p. 381 (1977), and references therein.Google Scholar
  63. 63.
    D. Coucouvanis, Fe-M-S Complexes Derived from MS4 2- Anions (M = Mo, W) and Their Possible Relevance as Analogues for Structural Features in the Mo Site of Nitrogenase, Acc. Chem. Res. 14:201 (1981).CrossRefGoogle Scholar
  64. 64.
    G. Christou, C. D. Garner, R. M. Miller, C. E. Johnson and J. D. Rush, Mössbauer and Electrochemical Studies on Fe3MoS4 and Fe3WS4 Cubane-Like Cluster Dimers, J. Chem. Soc. (Dalton) 2363 (1980).Google Scholar
  65. 65.
    A. Kostikas, V. Petrouleas, A. Simopoulos, D. Coucouvanis and D. G. Holah, Mössbauer Effect in Synthetic Analogs of Rubredoxin, Chem. Phys. Lett. 38:582 (1976).CrossRefGoogle Scholar
  66. 66.
    R. H. Holm, W. D. Phillips, B. A. Averill, J. J. Mayerle and T. Herskovitz, Synthetic Analogs of the Active Sites of Iron-Sulfur Proteins. V. Proton Resonance Properties of the Tetranuclear Clusters [Fe4S4(SR)4]2-. Evidence for Dominant Contact Interactions, J. Am. Chem. Soc. 96:2109 (1974).PubMedCrossRefGoogle Scholar
  67. 67.
    J. G. Reynolds, E. J. Laskowski, and R. H. Holm, Proton Magnetic Resonance Properties of the Tetranuclear Clusters [Fe4S4(SR)4]3-, Analogues of the 4-Fe Sites of Reduced Ferredoxins, J. Am. Chem. Soc. 100:5315 (1978).CrossRefGoogle Scholar
  68. 68.
    E. I. Stiefel, The Structures and Spectra of Molybdoenzyme Active Sites and their Models, in: “Molybdenum and Molybdenum-Containing Enzymes,” M. P. Coughlan, ed., Pergamon Press, New York, p. 41 (1980) and references therein.Google Scholar
  69. 69.
    J. J. G. Moura, A. V. Xavier, M. Bruschi, J. Legall and J. M. P. Cabrai, A Molybdenum-Containing (2Fe,2S) Protein from Desulfovibrio gigas, a Sulfate Reducer, J. Less-Common Met. 54:555 (1977).CrossRefGoogle Scholar
  70. 70.
    K. P. Callahan and P. A. Piliero, Electrochemical Reduction of Trimetallic [M(M’S4)2]2- Ions (M = Ni(II), Pd(II) or Pt(II); M’ = Mo or W), J. Chem. Soc., Chem. Commun. 13 (1979).Google Scholar
  71. 71.
    A. Müller, R. Jostes, V. Flemming and R. Potthast, Delocalized Molecular Orbitals in the Trimetallic Thioheteroanion [S2WS2CoS2WS2]2-: Spectroscopic and Cyclic Voltammetric Results, Inorg. Chim. Acta 44:L33 (1980).CrossRefGoogle Scholar
  72. 72.
    P. Stremple, M. Draganjac and D. Coucouvanis, unpublished data.Google Scholar
  73. 73.
    E. D. Simhon, N. C. Baenziger, M. Kanatzidis, M. Draganjac and D. Coucouvanis, A New Mo(IV) Thioanion Containing Mo=St, J. Am. Chem. Soc. 103:1218 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Dimitri Coucouvanis
    • 1
  1. 1.Department of ChemistryUniversity of IowaIowa CityUSA

Personalised recommendations