Skip to main content

Thiomolybdates and Thiotungstates: Their Properties and Role as Ligands in Coordination Chemistry

  • Chapter
Nitrogen Fixation

Abstract

Since the first systematic studies of thiomolybdates and thio-tungstates as ligands having interesting properties in coordination chemistry,1–3 they have gained interest because of their impact in bioinorganic chemistry, e.g., the generation of compounds with poly-metallic units which exist in biology. The MoS 2-4 ion, for example, has been used as a starting material for the synthesis of FeMoS clusters. The possible relevance of the thiomolybdato and thiotungstato complexes of iron to the nitrogenase problem was pointed out several years ago.1 In this relation, the properties of such ions, e.g., their electronic structure and reactivity, their formation, and their tendency to form complexes, are of great importance. This article surveys the results available in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Müller and S. Sarkar, Thio-Heteroanionen aussergewöhnliche Metall-Liganden-Wechselwirkung und Reaktionen, Angew. Chem. 89:748 (1977).

    Article  Google Scholar 

  2. A. Müller, R. Jostes, V. Flemming and R. Potthast, Delocalized Molecular Orbitals in the Trimetallic Thioheteroanion [S2WS2CoS2WS2]2-: Spectroscopic and Cyclic Voltammetrie Results, Inorg. Chim. Acta 44:L33 (198).

    Article  Google Scholar 

  3. A. Müller, R. Jostes, H. G. Tölle, A. Trautwein, and E. Bill, On the Electronic Structure of Compounds with FeSMo Units. Properties of [Cl2FeS2MoS2]2- (M = Mo, W), Inorg. Chim. Acta 46:L121 (1980).

    Article  Google Scholar 

  4. A. Müller, E. Diemann, A. C. Ranade, and P. J. Aymonino, Electronic Spectra of the ions MoOxS4-x and WOXS4-x2-”, Z. Naturforsch. 24b:1247 (1969).

    Google Scholar 

  5. A. Müller, H. Dornfeld, H. Schulze, and R. C. Sharma, Über K2MoO3S, Darstellung eines reinen Monothiomolybdats, Z. anorg. allg. Chem. 468:193 (1980).

    Article  Google Scholar 

  6. A. Muller, B. Krebs, W. Rittner, and M. Stockburger, Spektroskopische Untersuchungen an Chalkogenometallaten: Elektronenabsorptionsspektren von VS4 3-, MoO2S2 2-, WO2S2 2- und ReO3S-. Schwingungsspektren, Kraftkonstanten und mittlere Schwingungsamplituden von VO4 3-, VS4 3-, MoS4 2- and ReO3S-, Ber. Bunsenges. Phys. Chem. 71:182 (1967).

    Google Scholar 

  7. G. Krüss, Über die Schwefelverbindungen des Molybdäns, Lieb. Ann. Chem. 225:1 (1884).

    Article  Google Scholar 

  8. A. Müller, B. Krebs, R. Kebabcioglu, M. Stockburger, and O. Glemser, Schwingungsspektren and Kraftkonstanten des Tetra-selenomolybdats(VI) und des Tetraselenowolframats(VI). Raman-Spektren von (NH4)2MoO2S2 und (NH4)2WO2S2, Spectrochim. Acta 24A:1831 (1968).

    Google Scholar 

  9. K. H. Schmidt and A. Müller, Schwingungsspektren und Normalkoordinatenanalyse von MoOSe3 2”, WOSe3 2-, MoO2Se2 2- und WO2Se2 2-, Spectrochim. Acta 28A:1829 (1972).

    Google Scholar 

  10. A. Müller, N. Weinstock, K. H. Schmidt, K. Nakamoto. and C. W. Schläpfer, Raman-Spektren von (NH4)2MoO2S2 mit 92Mo und 100Mo, Spectrochim. Acta 28A:2289 (1972)

    Google Scholar 

  11. E. Diemann and A. Müller, Elektronenspektren des VOS3 3-, MoOS3 2- und WOS3 2- Ions, Spectrochim. Acta 26A:215 (1970).

    Google Scholar 

  12. A. Müller, E. Diemann, F. Neumann, and R. Menge, The Assignments of Electron Transfer Bands of Molybdates (VI), Tung-states(VI) and Rhenates(VII) of the Type MXY3(C3v) (X,Y = O,S,Se), Chem. Phys. Lett. 16:521 (1972).

    Article  Google Scholar 

  13. A. Müller, E. Diemann, and U. Heidborn, Darstellung, Eigenschaften, IR-Spektren und rontgengraphische Untersuchungen von Trithiomolybdaten und -wolframaten, Z. anorg. allg. Chem. 371:136 (1969).

    Article  Google Scholar 

  14. A. Müller, N. Weinstock, and H. Schulze, Laser-Raman-Spektren der Ionen MoS4 2-, WS4 2-, MoOS3 2- und WOS3 2-. in wässbriger Lösung sowie entsprechenden kristallinen Alkalisalze, Spectrochim. Acta 28A:1075 (1972).

    Google Scholar 

  15. B. Krebs, A. Müller, and E. Kindler, Kristallstruktur von Cs2MoOS3, Z. Naturforsch. 25b:222 (1970).

    Google Scholar 

  16. A. Müller and E. Diemann, Higher Energy Bands in the Electronic Absorption Spectra of CrO4 2-, RuO4, OsO4, WS4 2-, MoS4 2-, WSe4 2- and MoSe4 2-. A Note on the Assignment of the Electronic Spectra of Closed Shell Tetroxo-, Tetrathio- and Tetraselenoanions, Chem. Phys. Lett. 9:369 (1971).

    Article  Google Scholar 

  17. T. Lapasset, N. Chezeau, and P. Belounge, Nouvel Affinement de la Structure Cristalline der Thiomolybdate d’Ammonium, Acta Cryst. B32:3087 (1976).

    CAS  Google Scholar 

  18. A. Müller, K. H. Schmidt, and U. Zint, Schwingungsspektren und Kraftkonstanten von MoS3Se2- und WSSe3 2-, Spectrochim. Acta 32A:901 (1976).

    Google Scholar 

  19. A. Müller and W. Sievert, Röntgenographische Untersuchungen und Strukturchemie von Chalkogenomolybdaten und -wolframaten, Z. anorg. allg. chem. 403:267 (1974).

    Article  Google Scholar 

  20. E. Corleis, Über die Schwefelverbindungen des Wolframs, Lieb. Ann. Chem. 232:244 (1886).

    Article  Google Scholar 

  21. M. J. F. Leroy, M. Burgard, and A. Müller, Spectres infrarouges et Raman des ions MoO3S2- et WO3S2- dans les solides. Conclusion de l’étude des oxothioanions, Bull. Soc. Chim. France 118 (1971).

    Google Scholar 

  22. W. Gonschorek, Th. Hahn, and A. Müller, The Crystal Structure of Ammonium Dithiotungstate (NH4)2WO2S2, Z. Kristallogr. 138:380 (1973).

    Article  CAS  Google Scholar 

  23. A. Müller, N. Weinstock, B. Krebs, B. Buss, and A. Ferwanah, Darstellung, Eigenschaften und Kristallstruktur von K3(WOS3)C1, Z. Naturforseh. 26b:268 (1971).

    Google Scholar 

  24. A. Müller and E. Diemann, Die Reaktionen von H2Se mit Dithio-Anionen des Molybdäns und Wolframs. Darstellung und Eigenschaften von Dithioselenomolybdaten und -wolframaten, Chem. Ber. 102:2603 (1969);

    Article  Google Scholar 

  25. A. Müller, E. Diemann, and H. Schulze, über K2MoOS3 und K2WOS3.KCl und ihre Reaktion mit Selenwasserstoff zu Dithiomonoselenomolybdaten und -wolframaten. Röntgenographische Datan von Cs2MoOS2Se und Cs2WOS2Se, Z. anorg. allg. Chem. 376:120 (1970);

    Article  Google Scholar 

  26. J. R. Guenter, and H. R. Oswald, Kristallographische Daten von Cs2MoOS2Se, Z. Naturforsch. 24b:1481 (1969).

    Google Scholar 

  27. A. Müller and E. Diemann, Monothiodiselenomolybdate(VI) und-wolframate(VI). Darstellung, Elektronenspektrum und röntgenographische Untersuchung, Z. anorg. allg. Chem. 373:57 (1970).

    Google Scholar 

  28. A. Müller, E. Diemann, and C. K. Jørgensen, Electronic Spectra of Tetrahedral Oxo, Thio and Seleno Complexes Formed by Elements of the Beginning of the Transition Groups, Struct. Bonding 14:23 (1973).

    Article  Google Scholar 

  29. A. Müller, Ch. K. Jørgensen, and E. Diemann, Elektronenüber-fuhrungs-, IR-, Raman- und Photoelektronenspektren sowie röntgenographische Untersuchungen von T12MO2S2, Tl2MOS3 und Tl2MS4 (M = Mo, W) sowie Photoelektronenspektren zahlreicher Ubergangsmetallverbindungen zum Vergleich, Z. anorg. allg. Chem. 391:38 (1972).

    Article  Google Scholar 

  30. J. C. Bernard and G. Tridot, Formation of Thiotungstic Ions, C. R. Acad. Sci. (Paris) 249:1520 (1959);

    CAS  Google Scholar 

  31. J. C. Bernard and G. Tridot, Contributions 1’étude des Thiotungstates et Thiomolybdates Alcalins: Identification et filiation de leurs ions en solution aqueuse. Préparation et étude de quelques thiotungstates et thiomolybdates alcalins, Bull. Soc. Chim. France 810:813 (1961).

    Google Scholar 

  32. G. Tridot and J. C. Bernard, Identification and Relations of Thiotungstate and Thiomolybdate Ions in Aqueous Solution. Quantitative Absorption of H2S Gas by Aqueous Solutions of Tungstates and Oxythiotungstates, Acta Chim. Acad. Sci. Hung. 34:179 (1962).

    CAS  Google Scholar 

  33. P. J. Aymonino, A. C. Ranade, and A. Müller, Evidence for the Existence of MoO3S2- and WO3S2- Ions in Aqueous Solution, Z. anorg. allg. Chem. 371:295 (1969).

    Google Scholar 

  34. P. J. Aymonino, A. C. Ranade, E. Diemann, and A. Müller, Study of Formation and Relative Reaction Rates of Different Thio-anions of Molybdenum and Tungsten, Z. anorg. allg. Chem. 371:300 (1969).

    Article  CAS  Google Scholar 

  35. M. Harmer and A. G. Sykes, Aqueous Solution Properties of Sulfido Complexes of Molybdenum, in: “Molybdenum Chemistry of Biological Significance,” W. E. Newton and S. Otsuka, eds., Plenum Press, New York, p. 401 (1980).

    Chapter  Google Scholar 

  36. M. A. Harmer and A. G. Sykes, Kinetics of the Interconversion of Sulfido- and Oxomolybdate(VI) Species MoOxS4-x2- in Aqueous Solutions, Inorg. Chem. 19:2881 (1980).

    Article  CAS  Google Scholar 

  37. A. Müller, W. O. Nolte, and B. Krebs, [(S2)2Mo(S2)2Mo(S2)2]2-, ein neuartiger Komplex mit nur S2 2--Liganden und einer Mo-Mo-Bindung, Angew. Chem. 90:286 (1978).

    Article  Google Scholar 

  38. A. Müller, S. Sarkar, R. G. Battacharyya, S. Pohl, and M. Dartmann, Directed Synthesis of [Mo3S13]2-, an Isolated Cluster Containing Sulfur Atoms in Three Different States of Bonding, Angew. Chem. 90:564 (1978).

    Article  Google Scholar 

  39. O. Lutz, A. Nolle, and P. Kroneck, Use of 95Mo NMR Spectroscopy as a New Approach to Structural Analysis of Diamagnetic Molybdenum Complexes, Z. Naturforsch. 31a:454 (1976).

    CAS  Google Scholar 

  40. O. Lutz, A. Nolle, and P. Kroneck, Sulfur Isotope Effect on 95Mo Nuclear Magnetic Shielding in MoS4 2-, Z. Physik A282:157 (1977).

    Google Scholar 

  41. A. Müller, O. Glemser, E. Diemann, and H. Hofmeister, Bildung und Zerfall von Chalkogenoanionen der Übergangsmetalle in wäßriger Lösung, Z. anorg. allg. Chem. 371:74 (1969).

    Article  Google Scholar 

  42. E. Königer-Ahlborn, H. Schulze, and A. Müller, Ober neuartige Chalkogenometalle des Typs A3I(MVIOS3)SH und AI[MVIS3(SH)] (M = Mo, W), Z. anorg. allg. Chem. 428:5 (1977).

    Article  Google Scholar 

  43. K. H. Schmidt and A. Müller, Vibrational Spectra of Transition Metal Chalcogen Compounds, Coord. Chem. Rev. 14:115 (1974).

    Article  CAS  Google Scholar 

  44. K. H. Schmidt and A. Müller, Pseudo Exact Force Constants by the High and Low Frequency Separation Method, J. Mol. Struct. 18:135 (1973).

    Article  CAS  Google Scholar 

  45. A. Müller, N. Weinstock, N. Mohan, C. W. Schläpfer, and K. Nakamoto, Vibrational Spectra and Force Constants of MoO4 2-and MoS4 2- Containing 92Mo and 100mo Isotopes, Appl. Spectrosc. 27:257 (1973).

    Article  Google Scholar 

  46. H. Schulze and A. Müller, Raman Intensities of the v1(A1) Line of Vanadate, Chromate, Molybdate, Tungstate, Rhenate(VII), Osmium(VIII) Oxide, and Thiotungstate(VI), Advan. Raman Spectrosc. 1:546 (1972).

    CAS  Google Scholar 

  47. R. Kebabcioglu and A. Müller, SCCC MO Calculations on the Ions WX42-, MoX4 2- and VX4 3- (X = O, S, Se), Chem. Phys. Lett. 8:59 (1971).

    Article  CAS  Google Scholar 

  48. R. Kebabcioglu, A. Müller, and W. Rittner, SCCC-MO-calculations on the Ions TCO4 -, ReO4- and ReS4 -, J. Mol. Struct. 9:207 (1971).

    Article  CAS  Google Scholar 

  49. S. S. L. Surana, S. P. Tandon, W. O. Nolte, and A. Müller, Intensities of the First Electron Transfer Band of Some Tetrahedral Thio Anions and Their Relation to Bond Properties, Can, J. Spectrosc. 24:18 (1979).

    CAS  Google Scholar 

  50. A. Müller and B. Krebs, Einige Gesetzlosigkeiten für die Valenzkraftkonstanten tetraedrischer Oxoanionen vom Typ XO4 n- mit d°-Konfiguration des Zentralatoms, Spectrochim. Acta 23A:1591 (1967).

    Google Scholar 

  51. A. Müller, E. Diemann, and M. J. F. Leroy, Elektronenspektren und Bindungsverhältnisse in den Ionen PS4 3-, AsS4 3-, und SDS4 3-, Z. anorg. allg. Chem. 372:113 (1970).

    Article  Google Scholar 

  52. R. H. Petit, B. Briat, A. Müller, and E. Diemann, Magnetic Circular Dichroism and Absorption Spectra of d° tetrahedral Oxyanions and Thioanions: MoS4 2-, MoO4 2-, WS4 2-, ReS4 2-, VS4 3-, VO4 3- and OsO4, Mol. Phys. 27:1373 (1974).

    Article  CAS  Google Scholar 

  53. A. Müller and E. Diemann, Note on the Identification of Electron Transfer Bands by the Resonance Raman Effect: MoOS3 2- Ion, J. Chem. Phys. 61:5469 (1974).

    Article  Google Scholar 

  54. A. Müller and E. Ahlborn, A Relation Between the Kind of Electronic Transitions and the Resonance Raman Effect (RRE). The RRE of WOSe3 2-, Spectrochim. Acta 31A:75 (1975); A. Müller and W. Jeagermann, unpublished data.

    Google Scholar 

  55. W. E. Newton, J. W. McDonald, K. Yamanouchi and J. H. Enemark, Synthesis and Molecular Structure of Molybdenum(V) Dimers with Mixed Oxo and Sulfido Terminal Ligands: Removal of Terminal Sulfide by Triphenylphosphine and Cyanide, Inorg. Chem. 18:1621 (1979).

    Article  CAS  Google Scholar 

  56. E. I. Stiefel, The Structures and Spectra of Molybdoenzyme Active Sites and teir Models, in: “Molybdenum and Molybdenum Containing Enzymes,” M. P. Coughlan, ed., Pergamon Press, Oxford-New York, p. 41 (1980).

    Google Scholar 

  57. M. T. Beck and J. Ling, Transition-Metal Complexes in the Prebiotic Soup, Naturwiss. 64:91 (1977).

    Article  CAS  Google Scholar 

  58. P. C. H. Mitchell and C. F. Pygall, Reactions of Molybdenum-Sulphur Compounds with Cyanide: Chemical Evolution and Deactivation of Molybdoenzymes, J. Inorg. Biochem. 11:25 (1979).

    Article  PubMed  CAS  Google Scholar 

  59. V. Massey and D. Edmondson, On the Mechanism of Inactivation of Xanthine Oxidase by Cyanide, J. Biol. Chem. 245:6595 (1970).

    PubMed  CAS  Google Scholar 

  60. M. G. B. Drew, P. C. H. Mitchell, and C. F. Pygall, Reaktion von Molybdat(VI) mit Cyanid-Ionen und Schwefelwasserstoff, Angew. Chem. 88:855 (1976).

    Article  CAS  Google Scholar 

  61. A. Müller and U. Reinsch, Aktivierung und Schwefelatomtransfer- Reaktion von Clustergebundenen S2 2--Brückenliganden: Synthese des neuen Clusters [Mo3 IVS4(CN)9]5- aus [Mo3IVs(S2)6]2-durch Umsetzung mit CN-, Angew. Chem. 92:69 (1980);

    Article  Google Scholar 

  62. A. Müller, E. Krickemeyer, and U. Reinsch, Reaktion von [Mo2(S2)6]2-mit Nucleophilen und einfache Darstellung des Bis-Disulfido-Komplexes [Mo2O2S2(S2)2]2-, Z. anorg. allg. Chem. 470:35 (1980).

    Article  Google Scholar 

  63. A. Müller and P. Christophliemk, unpublished data; P. Christophliemk, Diploma Thesis, Gottingen, 1969.

    Google Scholar 

  64. A. Müller and P. Christophliemk, Hexakalium-μ-thio-bis(hexa-cyanomolybdat(IV)), ein neuartiger Molybdänkomplex, Angew. Chem. 81:752 (1969).

    Article  Google Scholar 

  65. M. G. B. Drew, P. C. H. Mitchell, and C. F. Pygall, Preparation and Properties of Potassium μ-Thio-bis[hexacyanomoly-bdate(IV)], K6[Mo2(CN)12S], the Crystal Structure of its Double Salt with Potassium Tetraoxomolybdate(VI), and a Discussion of Molybdenum-Sulphur Bond Lengths and Bond Or Orders, J. C. S. (Dalton) 1213 (1979).

    Google Scholar 

  66. E. D. Simmon, N. C. Baenziger, M. Kanatzidis, M. Draganjee, and D. Coucouvanis, A New Mo(VI) Thioanion Containing the Mo=St Unit. Synthesis and Structural Characterization of (Et4N)2 MoS9, J. Am. Chem. Soc. 103:1218 (1981); A. Müller, U. Reinsch-Vogell and H. Bögge, unpublished results.

    Article  Google Scholar 

  67. A. Müller, W. Rittner, A. Neumann, E. Königer-Ahlborn, and R. G. Bhattacharyya, W3S9 2- und W3OS8 2-, das erste Polyoxothio-metallation, Z. anorg. allg. Chem. 461:91 (1980).

    Article  Google Scholar 

  68. A. Müller, W. Rittner, A. Neumann, and R. C. Sharma, Neuartige Redoxkondensationsreaktionen von MoO2S2 2- in H2O and zur Darstellung von Di -u-sulfido-Komplexen von MoV, Z . anorg. allg. Chem. 472:69 (1981).

    Article  Google Scholar 

  69. A. Müller, R. G. Bhattacharyya, E. Königer-Ahlborn, R. C. Sharma, W. Rittner, A. Neumann, G. Henkel, and B. Krebs, The Formation of Trinuclear W3S9 2--Type Species from WS4 2- by Condensation Redox Processes, Inorg. Chim. Acta 37:L493 (1979).

    Article  Google Scholar 

  70. E. Königer-Ahlborn and A. Müller, Eine Kristalline Verbindung mit Isoliertem W3S9 2- Ion, ein Thioanalogon zu Isopoly-anionen der Ubergangsmetalle, Angew. Chem. 87:598 (1975).

    Article  Google Scholar 

  71. F. Sécheresse, J. Lefebvre, J. C. Daran, and Y. Jeannin, Formation and Structure of the Tetranuclear Mixed Valence Anion [W2(VI)W2(V)S12]2-, Inorg. Chim. Acta 45:L45 (1980).

    Article  Google Scholar 

  72. W. Rittner, A. Müller, A. Neumann, W. Bäther, and R. C. Sharma, Erzeugung der Triangulo-Gruppe Mov-n-S2 beider Kondensation von [MoVIO2S2]2- zu [Mo2 VO2S2(S2)2]2-, Angew. Chem. 91:565 (1979).

    Article  CAS  Google Scholar 

  73. A. Müller and E. Diemann, The Bis(tetrathiotungstato)nickelate-(II) Ion, A Novel Complex with the WS4 2- Ion as a Ligand, J. Chem. Soc. Chem. Commun. 65 (1971);

    Google Scholar 

  74. A. Müller, E. Diemann, and H. H. Heinsen, Ubergangsmetallchalkogenverbindungen. Thio-Anionen als Zweizahnige Liganden in Übergangsmetallkomplexen: Darstellung und Eigenschaften von Tetrathio-wolframato-Verbindungen von NiII, CoII, und ZnII, Chem. Ber. 104:975 (1971).

    Article  Google Scholar 

  75. E. Diemann and A. Müller, Schwefel- und Selenverbindungen von Übergangsmetallen mit d°-Konfiguration, Coord. Chem. Rev. 10:79 (1973).

    Article  CAS  Google Scholar 

  76. A. Müller, R. Jostes, W. Hellmann, and E. Königer-Ahlborn, unpublished data.

    Google Scholar 

  77. D. Coucouvanis, E. D. Simhon, and N. C. Baenziger, Successful Isolation of a Reduced Tetrathiometallate Complex. Synthesis and Structural Characterization of the [(MoS4)2Fe]3- Trianion, J. Am. Chem. Soc. 102:6644 (1980);

    Article  CAS  Google Scholar 

  78. J. W. McDonald, G. D. Friesen, and W. E. Newton, Synthesis and Characterization of [Et4N]3[Fe(MoS4)2] • A New Fe-Mo-S Complex, Inorg. Chim. Acta 46:L79 (1980).

    Article  CAS  Google Scholar 

  79. A. Müller, S. Sarkar, E. Königer-Ahlborn, W. Hellmann, R. Jostes, P. J. Aymonino, and R. Potthast, unpublished data.

    Google Scholar 

  80. A. Müller and R. Jostes, unpublished data.

    Google Scholar 

  81. A. Müller, E. Königer-Ahlborn, E. Krickemeyer, and R. Jostes, Heterometall-Komplexe mit Dithiometallaten des Typs [M’(Mo2S2)2]2- (M = Mo, W; M’ = Co, Ni); Darstellung und Spektroskopische Eigenschaften, Z. anorg. allg. Chem., in press.

    Google Scholar 

  82. E. Königer-Ahlborn and A. Müller, Koordinationsverhältnisse in Bis(thiooxomolybdato)-metallat(II)-Komplexen des Typs [M(MoOS3)2]2- und [M(MoO2S2)2]2-, Angew. Chem. 86:709 (1974).

    Article  Google Scholar 

  83. A. Müller, N. Mohan, and H. Bögge, Molekül- und Elektronenstruktur des Thioheteroanions [S2WS2COS2WS2]2-, Z. Naturforsch. 33b:978 (1978).

    Google Scholar 

  84. A. Müller and H. H. Heinsen, Das Monooxotrithiowolframat-Anion WOS3 2- als zweizähniger Ligand in Übergangsmetallkomplexen, Chem. Ber. 105:1730 (1972).

    Article  Google Scholar 

  85. A. Müller, H. H. Heinsen and G. Vandrish, Transition Metal Complexes as Ligands. The Dioxodithiotungstate Ion WO2S2 2-, Inorg. Chem. 13:1001 (1974).

    Article  Google Scholar 

  86. A. Müller, E. Ahlborn, and H. H. Heinsen, MoS4 2- und WSe4 2- Ionen als Liganden in Ubergangsmetallkomplexen, Z. anorg. allg. Chem. 386:102 (1971).

    Article  Google Scholar 

  87. A. Müller, Isotopic Substitution, in: “Vibrational Spectroscopy — Modem Trends,” A. J. Barnes and W. J. Orville-Thomas, eds., Elsevier, New York, p. 335 (1977);

    Google Scholar 

  88. E. Königer-Ahlborn, A. Müller, A. D. Cormier, J. D. Brown, and K. Nakamoto, Metal Isotope Shifts and Normal-Coordinate Analysis of the [58ni(92moS4)2]2- Ion and Its 62ni and 100Mo Analogs, Inorg. Chem. 14:2009 (1975).

    Article  Google Scholar 

  89. A. Cormier, K. Nakamoto, E. Ahlborn, and A. Müller, Infrared Spectrum, Vibrational Assignment, and Normal Coordinate Analysis of the Bis(Tetrathiotungstato)-Nickel Complex, J. Mol. Struct. 25:43 (1975).

    Article  CAS  Google Scholar 

  90. A. Müller, H. H. Heinsen, K. Nakamoto, A. D. Cormier, and N. Weinstock, Infrared Spectra of [64Zn(92MoS4)2]2- and its 68Zn and 100Mo Analogs, Spectrochim. Acta 30A:1661 (1974).

    Google Scholar 

  91. A. Müller and R. Jostes, unpublished data.

    Google Scholar 

  92. I. Paulat-Böschen, B. Krebs, A. Müller, E. Königer-Ahlborn, H. Dornfeld, and H. Schulz, Structure and Vibrational Spectrum of Bis(Tetrathiotungstato)Zincate(II), [Zn(WS4)2]2-, Inorg. Chem. 17:1440 (1978).

    Article  Google Scholar 

  93. H. Dornfeld, Chalkogenometallationen als Liganden in Koordinationsverbindungen, Ph.D. Diss. Univ. Dortmund, 1978.

    Google Scholar 

  94. K. P. Callahan and P. A. Piliero, Complexes of d8 Metals with Tetrathiomolybdate and Tetrathiotungstate Ions. Synthesis, Spectroscopy, and Electrochemistry, Inorg. Chem. 19:2619 (1980).

    Article  CAS  Google Scholar 

  95. D. Coucouvanis, N. C. Baenziger, E. D. Simhon, P. Stemple, D. Swenson, A. Simopoulos, A. Kostikas, V. Petrouleas, and V. Papaefthymiou, Synthesis and Structural Characterization of the (Ph4P)2[Cl2FeS2MS2FeCl2] Complexes (M = Mo, W). First Example of a Double Bridging MoS4 Unit and Its Possible Relevance as a Structural Feature in the Nitrogenase Active Site, J. Am. Chem. Soc. 102:1732 (1980).

    Article  CAS  Google Scholar 

  96. A. Müller, M. C. Chakravorti and H. Dornfeld, Preparation and Spectral Properties of [Pt(WS4)2]2-, Z. Naturforsch. 30b:162 (1975).

    Google Scholar 

  97. D. Coucouvanis, E. D. Simhon, P. Stremple and N. C. Baenziger, Synthesis and Structural Characterization of [(NO)2FeS2MoS2]2- a Dinitrosyl Complex Containing the FeS2 MoS2 Core, Inorg. Chim. Acta 53:L135 (1981).

    Article  CAS  Google Scholar 

  98. W. P. Binnie, M. J. Redman, and W. J. Mallio, On the Preparation, Properties, and Structure of Cuprous Ammonium Thio-molybdate, Inorg. Chem. 9:1449 (1970).

    Article  CAS  Google Scholar 

  99. A. Müller and R. Menge, Über CuNH4WS4 und Cu2WS4, und andere Übergangsmetallchalkogenmetallate, Z. anorg. allg. Chem. 393:259 (1972).

    Article  Google Scholar 

  100. E. Königer-Ahlborn and A. Müller, Komplexe mit Thiometallat-Ionen als Brückenliganden, Angew. Chem. 88:725 (1976).

    Article  Google Scholar 

  101. A. Müller, H. Bögge, and T. K. Hwang, {Cu4W2S6}(PPh3)4O2, a Compound with a Metal Sulfur Cage Generated by the WOS3 2-, Ligand. Preparation, Crystal and Molecular Structure, Inorg. Chim. Acta 39:71 (1980).

    Article  Google Scholar 

  102. A. Müller, M. Dartmann, C. Römer, W. Clegg, and G. M. Sheldrick, [Ph4P]2[CuCN(MoS4)] and [Me4N]2[(CuCN)2MoS4]: Thiomoly-bdate Ligands on the Cu Atoms or a CuCN Molecule and a zig-zag-CuCN Chain, Angew. Chem. 93:1118 (1981).

    Article  Google Scholar 

  103. A. Müller, H. Dornfeld, G. Henkel, B. Krebs, and M. P. A. Viegers, [Au2(WS4)2]2-, ein Neuartiges Anorganisches Ringsystem, Angew. Chem. 90:57 (1978); A. Müller, H. Dornfeld, M. Dartmann, and H. Bögge, unpublished results.

    Article  Google Scholar 

  104. D. Coucouvanis, E. D. Simhon, D. Swenson, and N. C. Baenziger, X-Ray Crystal Structure of Bis(tetraethylammonium)Di-μ-thio-[bis(phenylthio)-ferrate(III)]dithiomolybdate(V), [Et4N]2 [(PhS)2FeMoS4]: J. Chem. Soc, Chem. Commun. 361 (1979).

    Google Scholar 

  105. R. H. Tieckelmann, H. C. Silvis, T. A. Kent, B. H. Huynh, J. V. Waszczak, B. K. Teo, and B. A. Averill, Synthetic Moly-bdenum-Iron-Sulfur Clusters. Preparation, Structures, and Properties of the [S2MoS2Fe(SC6H5)2]2- and [S2MoS2FeCl2]2-Ions, J. Am. Chem. Soc. 102:5550 (1980).

    Article  CAS  Google Scholar 

  106. A. Müller, A. M. Dommröse, W. Jaegermann, E. Krickemeyer, and S. Sarkar, Determination of the Structure of New Tetrathio-molybdato Complexes of Fe(II), Cu(I) and Ag(I) by the Resonance Raman Effect: Textbrook Examples for its Application in Coordination Chemistry, Angew. Chem. 93:1119 (1981).

    Article  Google Scholar 

  107. A. Müller, H. Bögge, H. G. Tolle. R. Jostes, U. Schimanski, and M. Dartmann, MoS4 2- und MoOS3 2- als strukturell Vielseitige und Biochemisch Interessante Liganden in Kristallinen Cu-und Fe-Mehrkernkomplexen, Angew. Chem. 92:665 (1980).

    Article  Google Scholar 

  108. A. Müller, H. G. Tölle, and H. Bögge, Darstellung und Kristallstruktur von Verbindungen mit den Komplexen Anionen [Cl2FeS2MoS2]2- und [Cl2FeS2WS2]2-, Z. anorg. allg. Chem. 471:115 (1980).

    Article  Google Scholar 

  109. R. Doherty, C. R. Hubbard, A. D. Mighell, A. R. Siedle and J. Stewart, Synthesis and Crystal and Molecular Structure of [(C7H7)3P]4Cu4W2O2S6, a Dimer of Bis[(tri-p-tolylphosphine)-copper]oxotrithiotungsten, Inorg. Chem. 18:2991 (1979).

    Article  CAS  Google Scholar 

  110. A. Müller, H. Bögge, E. Königer-Ahlborn and W. Hellman, Preparation and X-ray Crystal and Molecular Structure of [Mo2S8Ag4](PPh3)4, a Compound with a Metal-Sulfur Cage, Inorg. Chem. 18:2301 (1979).

    Article  Google Scholar 

  111. D. Coucouvanis, N. C. Baenziger, E. D. Simhon, P. Stremple, D. Swenson, A. Kostikas, A. Simopoulos, V. Petrouleas, and V. Papaefthymiou, Heterodinuclear Di-μ-Sulfido Bridged Dimers Containing Iron and Molybdenm or Tungsten. Structures of (PPh4)2(FeMS9) Complexes (M = Mo, W), J. Am. Chem. Soc. 102:1730 (1980).

    Article  CAS  Google Scholar 

  112. I. Søtofte, The Crystal Structure of Tetraphenylphosphonium Bis(tetrathiomolybdato)nickelate(II), Acta Chem. Scand. A30:157 (1976).

    Article  Google Scholar 

  113. A. Müller, H. Bögge and E. Königer-Ahlborn, X-Ray Crystal and Molecular Structure of [W2S8Ag4(PPh3)4], A Compound Having a Novel Metal-Sulfur Cage Fused by Two Connected Six-Membered WS3Ag2 Rings, J. C. S. Chem. Comm . 739 (1978).

    Google Scholar 

  114. A. Müller, H. Bögge, and U. Schimanski, Molybdenum-Copper-Sulphur-Containing Cage System and its Bioinorganic Relevance. Preparation and X-Ray Crystal Structure of (CU3M0S3Cl)(PPh3)3S with an Interesting Stereochemistry of Non-Equivalent Cu Atoms, J. Chem. Soc., Chem. Commun. 91 (1980).

    Google Scholar 

  115. J. C. Huffman, R. S. Roth and A. R. Siedle, Synthesis of Ternary Metal Sulfide Arrays, J. Am. Chem. Soc. 98:4340 (1976).

    Article  CAS  Google Scholar 

  116. A. Müller, T. K. Hwang, and H. Bögge, [{CU3WS3Cl}(PPh3)3O], Gezielte Synthese einer Verbindung mit Verschiedenen Metallatomen in einem Cubanartigen Gerüst, Angew. Chem. 91:656 (1979).

    Article  Google Scholar 

  117. J. K. Stalick, A. R. Siedle, A. D. Mighell, and C. R. Hubbard, A Novel Bimetallic Sulfur Cluster. Crystal and Molecular Structure of a Dimer of Bis(methyldiphenylphosphine silver) tetrathiotungsten, [(C6H5)2PCH3]4Ag4W2S8, J. Am. Chem. Soc. 101:2903 (1979).

    Article  CAS  Google Scholar 

  118. A. Müller, H. Bögge, and U. Schimanski, Crystal and Molecular Structure of [(C6H5)3P]2CuS2MoS2CuP(C6H5)3•0.8 CH2Cl2, a Compound with a Doubly Bridging MoS4 2--Ligand Between Cu Centers, Inorg. Chim. Acta 45:L249 (1980).

    Article  Google Scholar 

  119. A. Müller, H. Bögge, and E. Königer-Ahlborn, Darstellung und Kristallstruktur von (PPh3)3Ag2WS4, einem Neuartigen Dreikern-Komplex mit Tetraedrisch und Trigonal Planar Koordinierten Ag-Atomen, Z. Naturforsch. 34b:1698 (1979).

    Google Scholar 

  120. A. Müller, I. Paulat-Böschen, B. Krebs, and H. Dornfeld, Dimeres Bis(tetrathiowolframato)stannat, eine Neuartige Koordinations-verbindung mit nicht Äquivalenten und Dreizahnigen Liganden WS4 2-, Angew. Chem. 88:691 (1976).

    Article  Google Scholar 

  121. A. Müller, S. Sarkar, A. M. Dommröse, and R. Filgueira, Nachweis eines Doppelt Verbrückenden MoS4 2--Liganden zwischen Fe-Zentren mit dem Resonanz-Raman-Effekt und einfache Darstellung von [(C6H5)4P]2 [Cl2FeS2MoS2FeCl2], Z. Naturforsch. 35b:1592 (1980).

    Google Scholar 

  122. P. R. Edwards, C. E. Johnson, and R. J. P. Williams, Mössbauer Spectra of Some Tetrahedral Iron(II) Compounds, J. Chem. Phys. 47:2074 (1967).

    Article  CAS  Google Scholar 

  123. A. Müller and A. Trautwein, unpublished data.

    Google Scholar 

  124. K. P. Callahan and P. A. Piliero, Electrochemical Reduction of Trimetallic [M(M’S4)2]2- Ions (M = NiII, PdII, or PtII; M’ = Mo or W), J. Chem. Soc., Chem. Commun. 13 (1979).

    Google Scholar 

  125. A. Müller and W. Jaegermann, unpublished data; W. Jaegermann, Ph. D. Diss., Univ. Bielefeld, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Müller, A., Diemann, E. (1983). Thiomolybdates and Thiotungstates: Their Properties and Role as Ligands in Coordination Chemistry. In: Müller, A., Newton, W.E. (eds) Nitrogen Fixation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8523-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8523-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8525-7

  • Online ISBN: 978-1-4684-8523-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics