Thiomolybdates and Thiotungstates: Their Properties and Role as Ligands in Coordination Chemistry

  • Achim Müller
  • Ekkehard Diemann


Since the first systematic studies of thiomolybdates and thio-tungstates as ligands having interesting properties in coordination chemistry,1–3 they have gained interest because of their impact in bioinorganic chemistry, e.g., the generation of compounds with poly-metallic units which exist in biology. The MoS 4 2- ion, for example, has been used as a starting material for the synthesis of FeMoS clusters. The possible relevance of the thiomolybdato and thiotungstato complexes of iron to the nitrogenase problem was pointed out several years ago.1 In this relation, the properties of such ions, e.g., their electronic structure and reactivity, their formation, and their tendency to form complexes, are of great importance. This article surveys the results available in this area.


Resonance Raman Spectrum Longe Wavelength Band Normal Raman Spectrum Increase Sulfur Content Thio Anion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Müller and S. Sarkar, Thio-Heteroanionen aussergewöhnliche Metall-Liganden-Wechselwirkung und Reaktionen, Angew. Chem. 89:748 (1977).CrossRefGoogle Scholar
  2. 2.
    A. Müller, R. Jostes, V. Flemming and R. Potthast, Delocalized Molecular Orbitals in the Trimetallic Thioheteroanion [S2WS2CoS2WS2]2-: Spectroscopic and Cyclic Voltammetrie Results, Inorg. Chim. Acta 44:L33 (198).CrossRefGoogle Scholar
  3. 3.
    A. Müller, R. Jostes, H. G. Tölle, A. Trautwein, and E. Bill, On the Electronic Structure of Compounds with FeSMo Units. Properties of [Cl2FeS2MoS2]2- (M = Mo, W), Inorg. Chim. Acta 46:L121 (1980).CrossRefGoogle Scholar
  4. 4.
    A. Müller, E. Diemann, A. C. Ranade, and P. J. Aymonino, Electronic Spectra of the ions MoOxS4-x and WOXS4-x2-”, Z. Naturforsch. 24b:1247 (1969).Google Scholar
  5. 5.
    A. Müller, H. Dornfeld, H. Schulze, and R. C. Sharma, Über K2MoO3S, Darstellung eines reinen Monothiomolybdats, Z. anorg. allg. Chem. 468:193 (1980).CrossRefGoogle Scholar
  6. 6.
    A. Muller, B. Krebs, W. Rittner, and M. Stockburger, Spektroskopische Untersuchungen an Chalkogenometallaten: Elektronenabsorptionsspektren von VS4 3-, MoO2S2 2-, WO2S2 2- und ReO3S-. Schwingungsspektren, Kraftkonstanten und mittlere Schwingungsamplituden von VO4 3-, VS4 3-, MoS4 2- and ReO3S-, Ber. Bunsenges. Phys. Chem. 71:182 (1967).Google Scholar
  7. 7.
    G. Krüss, Über die Schwefelverbindungen des Molybdäns, Lieb. Ann. Chem. 225:1 (1884).CrossRefGoogle Scholar
  8. 8.
    A. Müller, B. Krebs, R. Kebabcioglu, M. Stockburger, and O. Glemser, Schwingungsspektren and Kraftkonstanten des Tetra-selenomolybdats(VI) und des Tetraselenowolframats(VI). Raman-Spektren von (NH4)2MoO2S2 und (NH4)2WO2S2, Spectrochim. Acta 24A:1831 (1968).Google Scholar
  9. 9.
    K. H. Schmidt and A. Müller, Schwingungsspektren und Normalkoordinatenanalyse von MoOSe3 2”, WOSe3 2-, MoO2Se2 2- und WO2Se2 2-, Spectrochim. Acta 28A:1829 (1972).Google Scholar
  10. 10.
    A. Müller, N. Weinstock, K. H. Schmidt, K. Nakamoto. and C. W. Schläpfer, Raman-Spektren von (NH4)2MoO2S2 mit 92Mo und 100Mo, Spectrochim. Acta 28A:2289 (1972)Google Scholar
  11. 11.
    E. Diemann and A. Müller, Elektronenspektren des VOS3 3-, MoOS3 2- und WOS3 2- Ions, Spectrochim. Acta 26A:215 (1970).Google Scholar
  12. 12.
    A. Müller, E. Diemann, F. Neumann, and R. Menge, The Assignments of Electron Transfer Bands of Molybdates (VI), Tung-states(VI) and Rhenates(VII) of the Type MXY3(C3v) (X,Y = O,S,Se), Chem. Phys. Lett. 16:521 (1972).CrossRefGoogle Scholar
  13. 13.
    A. Müller, E. Diemann, and U. Heidborn, Darstellung, Eigenschaften, IR-Spektren und rontgengraphische Untersuchungen von Trithiomolybdaten und -wolframaten, Z. anorg. allg. Chem. 371:136 (1969).CrossRefGoogle Scholar
  14. 14.
    A. Müller, N. Weinstock, and H. Schulze, Laser-Raman-Spektren der Ionen MoS4 2-, WS4 2-, MoOS3 2- und WOS3 2-. in wässbriger Lösung sowie entsprechenden kristallinen Alkalisalze, Spectrochim. Acta 28A:1075 (1972).Google Scholar
  15. 15.
    B. Krebs, A. Müller, and E. Kindler, Kristallstruktur von Cs2MoOS3, Z. Naturforsch. 25b:222 (1970).Google Scholar
  16. 16.
    A. Müller and E. Diemann, Higher Energy Bands in the Electronic Absorption Spectra of CrO4 2-, RuO4, OsO4, WS4 2-, MoS4 2-, WSe4 2- and MoSe4 2-. A Note on the Assignment of the Electronic Spectra of Closed Shell Tetroxo-, Tetrathio- and Tetraselenoanions, Chem. Phys. Lett. 9:369 (1971).CrossRefGoogle Scholar
  17. 17.
    T. Lapasset, N. Chezeau, and P. Belounge, Nouvel Affinement de la Structure Cristalline der Thiomolybdate d’Ammonium, Acta Cryst. B32:3087 (1976).Google Scholar
  18. 18.
    A. Müller, K. H. Schmidt, and U. Zint, Schwingungsspektren und Kraftkonstanten von MoS3Se2- und WSSe3 2-, Spectrochim. Acta 32A:901 (1976).Google Scholar
  19. 19.
    A. Müller and W. Sievert, Röntgenographische Untersuchungen und Strukturchemie von Chalkogenomolybdaten und -wolframaten, Z. anorg. allg. chem. 403:267 (1974).CrossRefGoogle Scholar
  20. 20.
    E. Corleis, Über die Schwefelverbindungen des Wolframs, Lieb. Ann. Chem. 232:244 (1886).CrossRefGoogle Scholar
  21. 21.
    M. J. F. Leroy, M. Burgard, and A. Müller, Spectres infrarouges et Raman des ions MoO3S2- et WO3S2- dans les solides. Conclusion de l’étude des oxothioanions, Bull. Soc. Chim. France 118 (1971).Google Scholar
  22. 22.
    W. Gonschorek, Th. Hahn, and A. Müller, The Crystal Structure of Ammonium Dithiotungstate (NH4)2WO2S2, Z. Kristallogr. 138:380 (1973).CrossRefGoogle Scholar
  23. 23.
    A. Müller, N. Weinstock, B. Krebs, B. Buss, and A. Ferwanah, Darstellung, Eigenschaften und Kristallstruktur von K3(WOS3)C1, Z. Naturforseh. 26b:268 (1971).Google Scholar
  24. 24.
    A. Müller and E. Diemann, Die Reaktionen von H2Se mit Dithio-Anionen des Molybdäns und Wolframs. Darstellung und Eigenschaften von Dithioselenomolybdaten und -wolframaten, Chem. Ber. 102:2603 (1969);CrossRefGoogle Scholar
  25. 24a.
    A. Müller, E. Diemann, and H. Schulze, über K2MoOS3 und K2WOS3.KCl und ihre Reaktion mit Selenwasserstoff zu Dithiomonoselenomolybdaten und -wolframaten. Röntgenographische Datan von Cs2MoOS2Se und Cs2WOS2Se, Z. anorg. allg. Chem. 376:120 (1970);CrossRefGoogle Scholar
  26. 24b.
    J. R. Guenter, and H. R. Oswald, Kristallographische Daten von Cs2MoOS2Se, Z. Naturforsch. 24b:1481 (1969).Google Scholar
  27. 25.
    A. Müller and E. Diemann, Monothiodiselenomolybdate(VI) und-wolframate(VI). Darstellung, Elektronenspektrum und röntgenographische Untersuchung, Z. anorg. allg. Chem. 373:57 (1970).Google Scholar
  28. 26.
    A. Müller, E. Diemann, and C. K. Jørgensen, Electronic Spectra of Tetrahedral Oxo, Thio and Seleno Complexes Formed by Elements of the Beginning of the Transition Groups, Struct. Bonding 14:23 (1973).CrossRefGoogle Scholar
  29. 27.
    A. Müller, Ch. K. Jørgensen, and E. Diemann, Elektronenüber-fuhrungs-, IR-, Raman- und Photoelektronenspektren sowie röntgenographische Untersuchungen von T12MO2S2, Tl2MOS3 und Tl2MS4 (M = Mo, W) sowie Photoelektronenspektren zahlreicher Ubergangsmetallverbindungen zum Vergleich, Z. anorg. allg. Chem. 391:38 (1972).CrossRefGoogle Scholar
  30. 28.
    J. C. Bernard and G. Tridot, Formation of Thiotungstic Ions, C. R. Acad. Sci. (Paris) 249:1520 (1959);Google Scholar
  31. 28a.
    J. C. Bernard and G. Tridot, Contributions 1’étude des Thiotungstates et Thiomolybdates Alcalins: Identification et filiation de leurs ions en solution aqueuse. Préparation et étude de quelques thiotungstates et thiomolybdates alcalins, Bull. Soc. Chim. France 810:813 (1961).Google Scholar
  32. 29.
    G. Tridot and J. C. Bernard, Identification and Relations of Thiotungstate and Thiomolybdate Ions in Aqueous Solution. Quantitative Absorption of H2S Gas by Aqueous Solutions of Tungstates and Oxythiotungstates, Acta Chim. Acad. Sci. Hung. 34:179 (1962).Google Scholar
  33. 30.
    P. J. Aymonino, A. C. Ranade, and A. Müller, Evidence for the Existence of MoO3S2- and WO3S2- Ions in Aqueous Solution, Z. anorg. allg. Chem. 371:295 (1969).Google Scholar
  34. 31.
    P. J. Aymonino, A. C. Ranade, E. Diemann, and A. Müller, Study of Formation and Relative Reaction Rates of Different Thio-anions of Molybdenum and Tungsten, Z. anorg. allg. Chem. 371:300 (1969).CrossRefGoogle Scholar
  35. 32.
    M. Harmer and A. G. Sykes, Aqueous Solution Properties of Sulfido Complexes of Molybdenum, in: “Molybdenum Chemistry of Biological Significance,” W. E. Newton and S. Otsuka, eds., Plenum Press, New York, p. 401 (1980).CrossRefGoogle Scholar
  36. 33.
    M. A. Harmer and A. G. Sykes, Kinetics of the Interconversion of Sulfido- and Oxomolybdate(VI) Species MoOxS4-x2- in Aqueous Solutions, Inorg. Chem. 19:2881 (1980).CrossRefGoogle Scholar
  37. 34.
    A. Müller, W. O. Nolte, and B. Krebs, [(S2)2Mo(S2)2Mo(S2)2]2-, ein neuartiger Komplex mit nur S2 2--Liganden und einer Mo-Mo-Bindung, Angew. Chem. 90:286 (1978).CrossRefGoogle Scholar
  38. 35.
    A. Müller, S. Sarkar, R. G. Battacharyya, S. Pohl, and M. Dartmann, Directed Synthesis of [Mo3S13]2-, an Isolated Cluster Containing Sulfur Atoms in Three Different States of Bonding, Angew. Chem. 90:564 (1978).CrossRefGoogle Scholar
  39. 36.
    O. Lutz, A. Nolle, and P. Kroneck, Use of 95Mo NMR Spectroscopy as a New Approach to Structural Analysis of Diamagnetic Molybdenum Complexes, Z. Naturforsch. 31a:454 (1976).Google Scholar
  40. 37.
    O. Lutz, A. Nolle, and P. Kroneck, Sulfur Isotope Effect on 95Mo Nuclear Magnetic Shielding in MoS4 2-, Z. Physik A282:157 (1977).Google Scholar
  41. 38.
    A. Müller, O. Glemser, E. Diemann, and H. Hofmeister, Bildung und Zerfall von Chalkogenoanionen der Übergangsmetalle in wäßriger Lösung, Z. anorg. allg. Chem. 371:74 (1969).CrossRefGoogle Scholar
  42. 39.
    E. Königer-Ahlborn, H. Schulze, and A. Müller, Ober neuartige Chalkogenometalle des Typs A3I(MVIOS3)SH und AI[MVIS3(SH)] (M = Mo, W), Z. anorg. allg. Chem. 428:5 (1977).CrossRefGoogle Scholar
  43. 40.
    K. H. Schmidt and A. Müller, Vibrational Spectra of Transition Metal Chalcogen Compounds, Coord. Chem. Rev. 14:115 (1974).CrossRefGoogle Scholar
  44. 41.
    K. H. Schmidt and A. Müller, Pseudo Exact Force Constants by the High and Low Frequency Separation Method, J. Mol. Struct. 18:135 (1973).CrossRefGoogle Scholar
  45. 42.
    A. Müller, N. Weinstock, N. Mohan, C. W. Schläpfer, and K. Nakamoto, Vibrational Spectra and Force Constants of MoO4 2-and MoS4 2- Containing 92Mo and 100mo Isotopes, Appl. Spectrosc. 27:257 (1973).CrossRefGoogle Scholar
  46. 43.
    H. Schulze and A. Müller, Raman Intensities of the v1(A1) Line of Vanadate, Chromate, Molybdate, Tungstate, Rhenate(VII), Osmium(VIII) Oxide, and Thiotungstate(VI), Advan. Raman Spectrosc. 1:546 (1972).Google Scholar
  47. 44.
    R. Kebabcioglu and A. Müller, SCCC MO Calculations on the Ions WX42-, MoX4 2- and VX4 3- (X = O, S, Se), Chem. Phys. Lett. 8:59 (1971).CrossRefGoogle Scholar
  48. 45.
    R. Kebabcioglu, A. Müller, and W. Rittner, SCCC-MO-calculations on the Ions TCO4 -, ReO4- and ReS4 -, J. Mol. Struct. 9:207 (1971).CrossRefGoogle Scholar
  49. 46.
    S. S. L. Surana, S. P. Tandon, W. O. Nolte, and A. Müller, Intensities of the First Electron Transfer Band of Some Tetrahedral Thio Anions and Their Relation to Bond Properties, Can, J. Spectrosc. 24:18 (1979).Google Scholar
  50. 47.
    A. Müller and B. Krebs, Einige Gesetzlosigkeiten für die Valenzkraftkonstanten tetraedrischer Oxoanionen vom Typ XO4 n- mit d°-Konfiguration des Zentralatoms, Spectrochim. Acta 23A:1591 (1967).Google Scholar
  51. 48.
    A. Müller, E. Diemann, and M. J. F. Leroy, Elektronenspektren und Bindungsverhältnisse in den Ionen PS4 3-, AsS4 3-, und SDS4 3-, Z. anorg. allg. Chem. 372:113 (1970).CrossRefGoogle Scholar
  52. 49.
    R. H. Petit, B. Briat, A. Müller, and E. Diemann, Magnetic Circular Dichroism and Absorption Spectra of d° tetrahedral Oxyanions and Thioanions: MoS4 2-, MoO4 2-, WS4 2-, ReS4 2-, VS4 3-, VO4 3- and OsO4, Mol. Phys. 27:1373 (1974).CrossRefGoogle Scholar
  53. 50.
    A. Müller and E. Diemann, Note on the Identification of Electron Transfer Bands by the Resonance Raman Effect: MoOS3 2- Ion, J. Chem. Phys. 61:5469 (1974).CrossRefGoogle Scholar
  54. 51.
    A. Müller and E. Ahlborn, A Relation Between the Kind of Electronic Transitions and the Resonance Raman Effect (RRE). The RRE of WOSe3 2-, Spectrochim. Acta 31A:75 (1975); A. Müller and W. Jeagermann, unpublished data.Google Scholar
  55. 52.
    W. E. Newton, J. W. McDonald, K. Yamanouchi and J. H. Enemark, Synthesis and Molecular Structure of Molybdenum(V) Dimers with Mixed Oxo and Sulfido Terminal Ligands: Removal of Terminal Sulfide by Triphenylphosphine and Cyanide, Inorg. Chem. 18:1621 (1979).CrossRefGoogle Scholar
  56. 53.
    E. I. Stiefel, The Structures and Spectra of Molybdoenzyme Active Sites and teir Models, in: “Molybdenum and Molybdenum Containing Enzymes,” M. P. Coughlan, ed., Pergamon Press, Oxford-New York, p. 41 (1980).Google Scholar
  57. 54.
    M. T. Beck and J. Ling, Transition-Metal Complexes in the Prebiotic Soup, Naturwiss. 64:91 (1977).CrossRefGoogle Scholar
  58. 55.
    P. C. H. Mitchell and C. F. Pygall, Reactions of Molybdenum-Sulphur Compounds with Cyanide: Chemical Evolution and Deactivation of Molybdoenzymes, J. Inorg. Biochem. 11:25 (1979).PubMedCrossRefGoogle Scholar
  59. 56.
    V. Massey and D. Edmondson, On the Mechanism of Inactivation of Xanthine Oxidase by Cyanide, J. Biol. Chem. 245:6595 (1970).PubMedGoogle Scholar
  60. 57.
    M. G. B. Drew, P. C. H. Mitchell, and C. F. Pygall, Reaktion von Molybdat(VI) mit Cyanid-Ionen und Schwefelwasserstoff, Angew. Chem. 88:855 (1976).CrossRefGoogle Scholar
  61. 58.
    A. Müller and U. Reinsch, Aktivierung und Schwefelatomtransfer- Reaktion von Clustergebundenen S2 2--Brückenliganden: Synthese des neuen Clusters [Mo3 IVS4(CN)9]5- aus [Mo3IVs(S2)6]2-durch Umsetzung mit CN-, Angew. Chem. 92:69 (1980);CrossRefGoogle Scholar
  62. 58a.
    A. Müller, E. Krickemeyer, and U. Reinsch, Reaktion von [Mo2(S2)6]2-mit Nucleophilen und einfache Darstellung des Bis-Disulfido-Komplexes [Mo2O2S2(S2)2]2-, Z. anorg. allg. Chem. 470:35 (1980).CrossRefGoogle Scholar
  63. 59.
    A. Müller and P. Christophliemk, unpublished data; P. Christophliemk, Diploma Thesis, Gottingen, 1969.Google Scholar
  64. 60.
    A. Müller and P. Christophliemk, Hexakalium-μ-thio-bis(hexa-cyanomolybdat(IV)), ein neuartiger Molybdänkomplex, Angew. Chem. 81:752 (1969).CrossRefGoogle Scholar
  65. 61.
    M. G. B. Drew, P. C. H. Mitchell, and C. F. Pygall, Preparation and Properties of Potassium μ-Thio-bis[hexacyanomoly-bdate(IV)], K6[Mo2(CN)12S], the Crystal Structure of its Double Salt with Potassium Tetraoxomolybdate(VI), and a Discussion of Molybdenum-Sulphur Bond Lengths and Bond Or Orders, J. C. S. (Dalton) 1213 (1979).Google Scholar
  66. 62.
    E. D. Simmon, N. C. Baenziger, M. Kanatzidis, M. Draganjee, and D. Coucouvanis, A New Mo(VI) Thioanion Containing the Mo=St Unit. Synthesis and Structural Characterization of (Et4N)2 MoS9, J. Am. Chem. Soc. 103:1218 (1981); A. Müller, U. Reinsch-Vogell and H. Bögge, unpublished results.CrossRefGoogle Scholar
  67. 63.
    A. Müller, W. Rittner, A. Neumann, E. Königer-Ahlborn, and R. G. Bhattacharyya, W3S9 2- und W3OS8 2-, das erste Polyoxothio-metallation, Z. anorg. allg. Chem. 461:91 (1980).CrossRefGoogle Scholar
  68. 64.
    A. Müller, W. Rittner, A. Neumann, and R. C. Sharma, Neuartige Redoxkondensationsreaktionen von MoO2S2 2- in H2O and zur Darstellung von Di -u-sulfido-Komplexen von MoV, Z . anorg. allg. Chem. 472:69 (1981).CrossRefGoogle Scholar
  69. 65.
    A. Müller, R. G. Bhattacharyya, E. Königer-Ahlborn, R. C. Sharma, W. Rittner, A. Neumann, G. Henkel, and B. Krebs, The Formation of Trinuclear W3S9 2--Type Species from WS4 2- by Condensation Redox Processes, Inorg. Chim. Acta 37:L493 (1979).CrossRefGoogle Scholar
  70. 66.
    E. Königer-Ahlborn and A. Müller, Eine Kristalline Verbindung mit Isoliertem W3S9 2- Ion, ein Thioanalogon zu Isopoly-anionen der Ubergangsmetalle, Angew. Chem. 87:598 (1975).CrossRefGoogle Scholar
  71. 67.
    F. Sécheresse, J. Lefebvre, J. C. Daran, and Y. Jeannin, Formation and Structure of the Tetranuclear Mixed Valence Anion [W2(VI)W2(V)S12]2-, Inorg. Chim. Acta 45:L45 (1980).CrossRefGoogle Scholar
  72. 68.
    W. Rittner, A. Müller, A. Neumann, W. Bäther, and R. C. Sharma, Erzeugung der Triangulo-Gruppe Mov-n-S2 beider Kondensation von [MoVIO2S2]2- zu [Mo2 VO2S2(S2)2]2-, Angew. Chem. 91:565 (1979).CrossRefGoogle Scholar
  73. 69.
    A. Müller and E. Diemann, The Bis(tetrathiotungstato)nickelate-(II) Ion, A Novel Complex with the WS4 2- Ion as a Ligand, J. Chem. Soc. Chem. Commun. 65 (1971);Google Scholar
  74. 69a.
    A. Müller, E. Diemann, and H. H. Heinsen, Ubergangsmetallchalkogenverbindungen. Thio-Anionen als Zweizahnige Liganden in Übergangsmetallkomplexen: Darstellung und Eigenschaften von Tetrathio-wolframato-Verbindungen von NiII, CoII, und ZnII, Chem. Ber. 104:975 (1971).CrossRefGoogle Scholar
  75. 70.
    E. Diemann and A. Müller, Schwefel- und Selenverbindungen von Übergangsmetallen mit d°-Konfiguration, Coord. Chem. Rev. 10:79 (1973).CrossRefGoogle Scholar
  76. 71.
    A. Müller, R. Jostes, W. Hellmann, and E. Königer-Ahlborn, unpublished data.Google Scholar
  77. 72.
    D. Coucouvanis, E. D. Simhon, and N. C. Baenziger, Successful Isolation of a Reduced Tetrathiometallate Complex. Synthesis and Structural Characterization of the [(MoS4)2Fe]3- Trianion, J. Am. Chem. Soc. 102:6644 (1980);CrossRefGoogle Scholar
  78. 72a.
    J. W. McDonald, G. D. Friesen, and W. E. Newton, Synthesis and Characterization of [Et4N]3[Fe(MoS4)2] • A New Fe-Mo-S Complex, Inorg. Chim. Acta 46:L79 (1980).CrossRefGoogle Scholar
  79. 73.
    A. Müller, S. Sarkar, E. Königer-Ahlborn, W. Hellmann, R. Jostes, P. J. Aymonino, and R. Potthast, unpublished data.Google Scholar
  80. 74.
    A. Müller and R. Jostes, unpublished data.Google Scholar
  81. 75.
    A. Müller, E. Königer-Ahlborn, E. Krickemeyer, and R. Jostes, Heterometall-Komplexe mit Dithiometallaten des Typs [M’(Mo2S2)2]2- (M = Mo, W; M’ = Co, Ni); Darstellung und Spektroskopische Eigenschaften, Z. anorg. allg. Chem., in press.Google Scholar
  82. 76.
    E. Königer-Ahlborn and A. Müller, Koordinationsverhältnisse in Bis(thiooxomolybdato)-metallat(II)-Komplexen des Typs [M(MoOS3)2]2- und [M(MoO2S2)2]2-, Angew. Chem. 86:709 (1974).CrossRefGoogle Scholar
  83. 77.
    A. Müller, N. Mohan, and H. Bögge, Molekül- und Elektronenstruktur des Thioheteroanions [S2WS2COS2WS2]2-, Z. Naturforsch. 33b:978 (1978).Google Scholar
  84. 78.
    A. Müller and H. H. Heinsen, Das Monooxotrithiowolframat-Anion WOS3 2- als zweizähniger Ligand in Übergangsmetallkomplexen, Chem. Ber. 105:1730 (1972).CrossRefGoogle Scholar
  85. 79.
    A. Müller, H. H. Heinsen and G. Vandrish, Transition Metal Complexes as Ligands. The Dioxodithiotungstate Ion WO2S2 2-, Inorg. Chem. 13:1001 (1974).CrossRefGoogle Scholar
  86. 80.
    A. Müller, E. Ahlborn, and H. H. Heinsen, MoS4 2- und WSe4 2- Ionen als Liganden in Ubergangsmetallkomplexen, Z. anorg. allg. Chem. 386:102 (1971).CrossRefGoogle Scholar
  87. 81.
    A. Müller, Isotopic Substitution, in: “Vibrational Spectroscopy — Modem Trends,” A. J. Barnes and W. J. Orville-Thomas, eds., Elsevier, New York, p. 335 (1977);Google Scholar
  88. 81a.
    E. Königer-Ahlborn, A. Müller, A. D. Cormier, J. D. Brown, and K. Nakamoto, Metal Isotope Shifts and Normal-Coordinate Analysis of the [58ni(92moS4)2]2- Ion and Its 62ni and 100Mo Analogs, Inorg. Chem. 14:2009 (1975).CrossRefGoogle Scholar
  89. 82.
    A. Cormier, K. Nakamoto, E. Ahlborn, and A. Müller, Infrared Spectrum, Vibrational Assignment, and Normal Coordinate Analysis of the Bis(Tetrathiotungstato)-Nickel Complex, J. Mol. Struct. 25:43 (1975).CrossRefGoogle Scholar
  90. 83.
    A. Müller, H. H. Heinsen, K. Nakamoto, A. D. Cormier, and N. Weinstock, Infrared Spectra of [64Zn(92MoS4)2]2- and its 68Zn and 100Mo Analogs, Spectrochim. Acta 30A:1661 (1974).Google Scholar
  91. 84.
    A. Müller and R. Jostes, unpublished data.Google Scholar
  92. 85.
    I. Paulat-Böschen, B. Krebs, A. Müller, E. Königer-Ahlborn, H. Dornfeld, and H. Schulz, Structure and Vibrational Spectrum of Bis(Tetrathiotungstato)Zincate(II), [Zn(WS4)2]2-, Inorg. Chem. 17:1440 (1978).CrossRefGoogle Scholar
  93. 86.
    H. Dornfeld, Chalkogenometallationen als Liganden in Koordinationsverbindungen, Ph.D. Diss. Univ. Dortmund, 1978.Google Scholar
  94. 87.
    K. P. Callahan and P. A. Piliero, Complexes of d8 Metals with Tetrathiomolybdate and Tetrathiotungstate Ions. Synthesis, Spectroscopy, and Electrochemistry, Inorg. Chem. 19:2619 (1980).CrossRefGoogle Scholar
  95. 88.
    D. Coucouvanis, N. C. Baenziger, E. D. Simhon, P. Stemple, D. Swenson, A. Simopoulos, A. Kostikas, V. Petrouleas, and V. Papaefthymiou, Synthesis and Structural Characterization of the (Ph4P)2[Cl2FeS2MS2FeCl2] Complexes (M = Mo, W). First Example of a Double Bridging MoS4 Unit and Its Possible Relevance as a Structural Feature in the Nitrogenase Active Site, J. Am. Chem. Soc. 102:1732 (1980).CrossRefGoogle Scholar
  96. 89.
    A. Müller, M. C. Chakravorti and H. Dornfeld, Preparation and Spectral Properties of [Pt(WS4)2]2-, Z. Naturforsch. 30b:162 (1975).Google Scholar
  97. 90.
    D. Coucouvanis, E. D. Simhon, P. Stremple and N. C. Baenziger, Synthesis and Structural Characterization of [(NO)2FeS2MoS2]2- a Dinitrosyl Complex Containing the FeS2 MoS2 Core, Inorg. Chim. Acta 53:L135 (1981).CrossRefGoogle Scholar
  98. 91.
    W. P. Binnie, M. J. Redman, and W. J. Mallio, On the Preparation, Properties, and Structure of Cuprous Ammonium Thio-molybdate, Inorg. Chem. 9:1449 (1970).CrossRefGoogle Scholar
  99. 92.
    A. Müller and R. Menge, Über CuNH4WS4 und Cu2WS4, und andere Übergangsmetallchalkogenmetallate, Z. anorg. allg. Chem. 393:259 (1972).CrossRefGoogle Scholar
  100. 93.
    E. Königer-Ahlborn and A. Müller, Komplexe mit Thiometallat-Ionen als Brückenliganden, Angew. Chem. 88:725 (1976).CrossRefGoogle Scholar
  101. 94.
    A. Müller, H. Bögge, and T. K. Hwang, {Cu4W2S6}(PPh3)4O2, a Compound with a Metal Sulfur Cage Generated by the WOS3 2-, Ligand. Preparation, Crystal and Molecular Structure, Inorg. Chim. Acta 39:71 (1980).CrossRefGoogle Scholar
  102. 95.
    A. Müller, M. Dartmann, C. Römer, W. Clegg, and G. M. Sheldrick, [Ph4P]2[CuCN(MoS4)] and [Me4N]2[(CuCN)2MoS4]: Thiomoly-bdate Ligands on the Cu Atoms or a CuCN Molecule and a zig-zag-CuCN Chain, Angew. Chem. 93:1118 (1981).CrossRefGoogle Scholar
  103. 96.
    A. Müller, H. Dornfeld, G. Henkel, B. Krebs, and M. P. A. Viegers, [Au2(WS4)2]2-, ein Neuartiges Anorganisches Ringsystem, Angew. Chem. 90:57 (1978); A. Müller, H. Dornfeld, M. Dartmann, and H. Bögge, unpublished results.CrossRefGoogle Scholar
  104. 97.
    D. Coucouvanis, E. D. Simhon, D. Swenson, and N. C. Baenziger, X-Ray Crystal Structure of Bis(tetraethylammonium)Di-μ-thio-[bis(phenylthio)-ferrate(III)]dithiomolybdate(V), [Et4N]2 [(PhS)2FeMoS4]: J. Chem. Soc, Chem. Commun. 361 (1979).Google Scholar
  105. 98.
    R. H. Tieckelmann, H. C. Silvis, T. A. Kent, B. H. Huynh, J. V. Waszczak, B. K. Teo, and B. A. Averill, Synthetic Moly-bdenum-Iron-Sulfur Clusters. Preparation, Structures, and Properties of the [S2MoS2Fe(SC6H5)2]2- and [S2MoS2FeCl2]2-Ions, J. Am. Chem. Soc. 102:5550 (1980).CrossRefGoogle Scholar
  106. 99.
    A. Müller, A. M. Dommröse, W. Jaegermann, E. Krickemeyer, and S. Sarkar, Determination of the Structure of New Tetrathio-molybdato Complexes of Fe(II), Cu(I) and Ag(I) by the Resonance Raman Effect: Textbrook Examples for its Application in Coordination Chemistry, Angew. Chem. 93:1119 (1981).CrossRefGoogle Scholar
  107. 100.
    A. Müller, H. Bögge, H. G. Tolle. R. Jostes, U. Schimanski, and M. Dartmann, MoS4 2- und MoOS3 2- als strukturell Vielseitige und Biochemisch Interessante Liganden in Kristallinen Cu-und Fe-Mehrkernkomplexen, Angew. Chem. 92:665 (1980).CrossRefGoogle Scholar
  108. 101.
    A. Müller, H. G. Tölle, and H. Bögge, Darstellung und Kristallstruktur von Verbindungen mit den Komplexen Anionen [Cl2FeS2MoS2]2- und [Cl2FeS2WS2]2-, Z. anorg. allg. Chem. 471:115 (1980).CrossRefGoogle Scholar
  109. 102.
    R. Doherty, C. R. Hubbard, A. D. Mighell, A. R. Siedle and J. Stewart, Synthesis and Crystal and Molecular Structure of [(C7H7)3P]4Cu4W2O2S6, a Dimer of Bis[(tri-p-tolylphosphine)-copper]oxotrithiotungsten, Inorg. Chem. 18:2991 (1979).CrossRefGoogle Scholar
  110. 103.
    A. Müller, H. Bögge, E. Königer-Ahlborn and W. Hellman, Preparation and X-ray Crystal and Molecular Structure of [Mo2S8Ag4](PPh3)4, a Compound with a Metal-Sulfur Cage, Inorg. Chem. 18:2301 (1979).CrossRefGoogle Scholar
  111. 104.
    D. Coucouvanis, N. C. Baenziger, E. D. Simhon, P. Stremple, D. Swenson, A. Kostikas, A. Simopoulos, V. Petrouleas, and V. Papaefthymiou, Heterodinuclear Di-μ-Sulfido Bridged Dimers Containing Iron and Molybdenm or Tungsten. Structures of (PPh4)2(FeMS9) Complexes (M = Mo, W), J. Am. Chem. Soc. 102:1730 (1980).CrossRefGoogle Scholar
  112. 105.
    I. Søtofte, The Crystal Structure of Tetraphenylphosphonium Bis(tetrathiomolybdato)nickelate(II), Acta Chem. Scand. A30:157 (1976).CrossRefGoogle Scholar
  113. 106.
    A. Müller, H. Bögge and E. Königer-Ahlborn, X-Ray Crystal and Molecular Structure of [W2S8Ag4(PPh3)4], A Compound Having a Novel Metal-Sulfur Cage Fused by Two Connected Six-Membered WS3Ag2 Rings, J. C. S. Chem. Comm . 739 (1978).Google Scholar
  114. 107.
    A. Müller, H. Bögge, and U. Schimanski, Molybdenum-Copper-Sulphur-Containing Cage System and its Bioinorganic Relevance. Preparation and X-Ray Crystal Structure of (CU3M0S3Cl)(PPh3)3S with an Interesting Stereochemistry of Non-Equivalent Cu Atoms, J. Chem. Soc., Chem. Commun. 91 (1980).Google Scholar
  115. 108.
    J. C. Huffman, R. S. Roth and A. R. Siedle, Synthesis of Ternary Metal Sulfide Arrays, J. Am. Chem. Soc. 98:4340 (1976).CrossRefGoogle Scholar
  116. 109.
    A. Müller, T. K. Hwang, and H. Bögge, [{CU3WS3Cl}(PPh3)3O], Gezielte Synthese einer Verbindung mit Verschiedenen Metallatomen in einem Cubanartigen Gerüst, Angew. Chem. 91:656 (1979).CrossRefGoogle Scholar
  117. 110.
    J. K. Stalick, A. R. Siedle, A. D. Mighell, and C. R. Hubbard, A Novel Bimetallic Sulfur Cluster. Crystal and Molecular Structure of a Dimer of Bis(methyldiphenylphosphine silver) tetrathiotungsten, [(C6H5)2PCH3]4Ag4W2S8, J. Am. Chem. Soc. 101:2903 (1979).CrossRefGoogle Scholar
  118. 111.
    A. Müller, H. Bögge, and U. Schimanski, Crystal and Molecular Structure of [(C6H5)3P]2CuS2MoS2CuP(C6H5)3•0.8 CH2Cl2, a Compound with a Doubly Bridging MoS4 2--Ligand Between Cu Centers, Inorg. Chim. Acta 45:L249 (1980).CrossRefGoogle Scholar
  119. 112.
    A. Müller, H. Bögge, and E. Königer-Ahlborn, Darstellung und Kristallstruktur von (PPh3)3Ag2WS4, einem Neuartigen Dreikern-Komplex mit Tetraedrisch und Trigonal Planar Koordinierten Ag-Atomen, Z. Naturforsch. 34b:1698 (1979).Google Scholar
  120. 113.
    A. Müller, I. Paulat-Böschen, B. Krebs, and H. Dornfeld, Dimeres Bis(tetrathiowolframato)stannat, eine Neuartige Koordinations-verbindung mit nicht Äquivalenten und Dreizahnigen Liganden WS4 2-, Angew. Chem. 88:691 (1976).CrossRefGoogle Scholar
  121. 114.
    A. Müller, S. Sarkar, A. M. Dommröse, and R. Filgueira, Nachweis eines Doppelt Verbrückenden MoS4 2--Liganden zwischen Fe-Zentren mit dem Resonanz-Raman-Effekt und einfache Darstellung von [(C6H5)4P]2 [Cl2FeS2MoS2FeCl2], Z. Naturforsch. 35b:1592 (1980).Google Scholar
  122. 115.
    P. R. Edwards, C. E. Johnson, and R. J. P. Williams, Mössbauer Spectra of Some Tetrahedral Iron(II) Compounds, J. Chem. Phys. 47:2074 (1967).CrossRefGoogle Scholar
  123. 116.
    A. Müller and A. Trautwein, unpublished data.Google Scholar
  124. 117.
    K. P. Callahan and P. A. Piliero, Electrochemical Reduction of Trimetallic [M(M’S4)2]2- Ions (M = NiII, PdII, or PtII; M’ = Mo or W), J. Chem. Soc., Chem. Commun. 13 (1979).Google Scholar
  125. 118.
    A. Müller and W. Jaegermann, unpublished data; W. Jaegermann, Ph. D. Diss., Univ. Bielefeld, 1981.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Achim Müller
    • 1
  • Ekkehard Diemann
    • 1
  1. 1.Faculty of ChemistryUniversity of BielefeldBielefeld 1West Germany

Personalised recommendations