Biochemical Genetics of Nitrogen Fixation in Rhizobium

  • Hauke Hennecke
  • Martin Fuhrmann


Members of the genus Rhizobium are gram-negative, aerobic soil bacteria which are able to invade root hairs of leguminous plants (family: Leguminosae) and incite the production of root nodules, wherein the bacteria become symbiotic nitrogen-fixing bacteroids. The Rhizobia are generally classified on the plant affinity concept (cross-inoculation groups) and according to their rapid or slow growth on yeast extract/mineral salts/mannitol medium (Table 1).


MoFe Protein Biochemical Genetic Nitrogen Fixation Gene Rhizobium Japonicum Vector pACYC184 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. J. Child, Nitrogen Fixation by Free-Living Rhizobium and its Implications, in: “Recent Advances in Biological Nitrogen Fixation,” N. S. Subba Rao, ed., Edward Arnold, London, p. 325 (1980).Google Scholar
  2. 2.
    J. C. Burton, New Developments in Inoculating Legumes, in: “Recent Advances in Biological Nitrogen Fixation,”, N. S. Subba Rao, ed., Edward Arnold, London, p. 380 (1980).Google Scholar
  3. 3.
    D. W. Israel, R. L. Howard, H. J. Evans, and S. A. Russell, Purification and Characterization of the Molybdenum-Iron Protein Component of Nitrogenase from Soybean Nodule Bacteroids, J. Biol. Chem. 249:500 (1974).PubMedGoogle Scholar
  4. 4.
    M. J. Whiting and M. J. Dilworth, Legume Root Nodule Nitrogenase: Purification, Properties, and Studies on its Genetic Control, Biochim. Biophys. Acta 371:337 (1974).PubMedGoogle Scholar
  5. 5.
    C. Kennedy, R. R. Eady, E. Kondorosi, and D. K. Rekosh, The Molybdenum-Iron Protein of Klebsiella pneumoniae Nitrogenase, Biochem. J. 155:383 (1976).PubMedGoogle Scholar
  6. 6.
    D. B. Scott, H. Hennecke, and S. T. Lim, The Biosynthesis of Nitrogenase MoFe Protein Polypeptides in Free-Living Cultures of Rhizobium japonicum, Biochim. Biophys. Acta 565:365 (1979).PubMedGoogle Scholar
  7. 7.
    D. W. Emerich and R. H. Burris, Complementary Functioning of the Component Proteins of Nitrogenase from Several Bacteria, J. Bacteriol. 134:936 (1978).PubMedGoogle Scholar
  8. 8.
    R. J. Maier and W. J. Brill, Ineffective and Non-Nodulating Mutant Strains of Rhizobium japonicum, J. Bacteriol. 127:763 (1976).PubMedGoogle Scholar
  9. 9.
    F. J. Bergersen, G. L. Turner, A. H. Gibson, and W. F. Dudman, Nitrogenase Activity and Respiration of Cultures of Rhizobium spp. with Special Reference to Concentration of Dissolved Oxygen, Biochim. Biophys. Acta 444:164 (1976).PubMedCrossRefGoogle Scholar
  10. 10.
    S. T. Lim, H. Hennecke, and D. B. Scott, Effect of Cyclic Guanosine-3′,5′-Monophosphate on Nitrogen Fixation in Rhizobium japonicum, J. Bacteriol. 139:256 (1979).PubMedGoogle Scholar
  11. 11.
    D. J. Arp and R. H. Burris, Kinetic Mechanism of the Hydrogen- Oxidizing Hydrogenase from Soybean Nodule Bacteroids, Biochemistry 20:2234 (1981).PubMedCrossRefGoogle Scholar
  12. 12.
    R. W. F. Hardy and U. D. Havelka, Nitrogen Fixation Research: A Key to World Food?, Science 188:633 (1975).PubMedCrossRefGoogle Scholar
  13. 13.
    F. O’Gara and K. T. Shanmugam, Regulation of Nitrogen Fixation by Rhizobium: Export of Fixed N2 as NH4 +, Biochim. Biophys. Acta 437:313 (1976).PubMedCrossRefGoogle Scholar
  14. 14.
    F. J. Bergersen and G. L. Turner, Activity of Nitrogenase and Glutamine Synthetase in Relation to Availability of Oxygen in Continuous Cultures of a Strain of Cowpea Rhizobium sp. Supplied with Excess Ammonium, Biochim. Biophys. Acta 538:406 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    T. Bisseling, A. A. Moen, R. C. van den Bos, and A. van Kammen, The Sequence of Appearance of Leghemoglobin and Nitrogenase Components 1 and 2 in Root Nodules of Pisum sativum, J. Gen. Microbiol. 118:377 (1980).Google Scholar
  16. 16.
    J. E. Beringer, The Development of Rhizobium Genetics, J. Gen. Microbiol. 116:1 (1980).Google Scholar
  17. 17.
    A. N. Pain, Symbiotic Properties of Antibiotic-Resistant and Auxotrophic Mutants of Rhizobium leguminosarum, J. Appl. Bacteriol. 47:53 (1979).CrossRefGoogle Scholar
  18. 18.
    E. A. Schwinghamer, Mutation to Auxotrophy and Prototrophy as Related to Symbiotic Effectiveness in R. 1eguminosarum and R. trifolii, Can. J. Microbiol. 15:611 (1969).PubMedCrossRefGoogle Scholar
  19. 19.
    M. J. Duncan, Properties of Tn5-Induced Carbohydrate Mutants in Rhizobium meliloti, J. Gen. Microbiol. 122:61 (1981).Google Scholar
  20. 20.
    M. S. Osburne and E. R. Signer, Ammonium Assimilation in Rhizobium meliloti, J. Bacteriol. 143:1234 (1980).PubMedGoogle Scholar
  21. 21.
    F. C. Cannon, G. E. Riedel, and F. M. Ausubel, Overlapping Sequences of Klebsiella pneumoniae nif DNA Cloned and Characterized, Molec. Gen. Genet. 174:59 (1979).PubMedCrossRefGoogle Scholar
  22. 22.
    G. B. Ruvkun and F. M. Ausubel, Interspecies Homology of Nitrogenase Genes, Proc. Natl. Acad. Sci. USA 77:191 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    H. Hennecke and J. R. Mielenz, Molecular Cloning of Rhizobium japonicum DNA in E. coli and Identification of Nitrogen Fixation (nif) Genes, in: “Genetic Engineering for Symbiotic Nitrogen Fixation and Conservation of Nitrogen,” J. M. Lyons, R. C. Valentine, D. A. Phillips, D. W. Rains and R. C. Huffaker, eds., Plenum Press, New York-London, p. 44 (1981).Google Scholar
  24. 24.
    G. Ditta, S. Stanfield, D. Corbin, and D. R. Helinski, Broad Host Range DNA Cloning System for Gram-Negative Bacteria: Construction of a Gene Bank of Rhizobium meliloti, Proc. Natl. Acad. Sci. USA 77:7347 (1980).PubMedCrossRefGoogle Scholar
  25. 25.
    G. B. Ruvkun and F. M. Ausubel, A General Method for Site-Directed Mutagenesis in Procaryotes, Nature 289:85 (1981).PubMedCrossRefGoogle Scholar
  26. 26.
    H. Hennecke, Recombinant Plasmids Carrying Nitrogen Fixation Genes of Rhizobium japonicum, Nature 291:354 (1981).CrossRefGoogle Scholar
  27. 27.
    M. P. Nuti, A. M. Ledeboer, A. A. Lepidi, R. A. Schilperoort, Large Plasmids in Different Rhizobium species, J. Gen. Microbiol. 100:241 (1977).Google Scholar
  28. 28.
    F. Casse, C. Boucher, J. S. Julliot, M. Michel, and J. Dénarié, Identification and Characterization of Large Plasmids in Rhizobium meliloti using Agarose Gel Electrophoresis, J. Gen. Microbiol. 113:229 (1979).Google Scholar
  29. 29.
    D. C. Gross, A. K. Vidaver, and A. V. Klucas, Plasmids, Biological Properties and Efficacy of Nitrogen Fixation in Rhizobium japonicum Indigenous to Alkaline Soils, J. Gen. Microbiol. 114:257 (1979).Google Scholar
  30. 30.
    P. R. Hirsch, M. van Montagu, A. W. B. Johnston, N. J. Brewin, and J. Schell, Physical Identification of Bacteriocinogenic, Nodulation and other Plasmids in Strains of Rhizobium leguminosarum, J. Gen. Microbiol. 120:403 (1980).Google Scholar
  31. 31.
    J. L. Beynon, J. E. Beringer, and A. W. B. Johnston, Plasmids and Host-Range in Rhizobium leguminosarum and Rhizobium phaseoli, J. Gen. Microbiol. 120:421 (1980).Google Scholar
  32. 32.
    K. L. Dunican and A. B. Tierney, Genetic Transfer of Nitrogen Fixation Genes on Indigenous Rhizobium Plasmids, Biochem. Biophys. Res. Commun. 57:62 (1974).PubMedCrossRefGoogle Scholar
  33. 33.
    M. P. Nuti, A. A. Lepidi, R. K. Prakash, R. A. Schilperoort, and F. C. Cannon, Evidence for Nitrogen Fixation (nif) Genes on Indigenous Rhizobium Plasmids, Nature 282:533 (1979).CrossRefGoogle Scholar
  34. 34.
    R. K. Prakash, R. A. Schilperoort, and M. P. Nuti, Large Plasmids of Fast-Growing Rhizobia: Homology Studies and Location of Structural Nitrogen Fixation (nif) Genes, J. Bacteriol. 145:1129 (1981).PubMedGoogle Scholar
  35. 35.
    G. Hombrecher, N. J. Brewin, and A. W. B. Johnston, Linkage of Genes for Nitrogenase and Nodulation Ability on Plasmids in Rhizobium leguminosarum and R. phaseoli, Molec. Gen. Genet. 182:133 (1981).CrossRefGoogle Scholar
  36. 36.
    P. J. J. Hooykaas, A. A. N. van Brussel, H. den Dulk-Ras, G. M. S. van Slogteren, and R. A. Schilperoort, Sym. Plasmids of Rhizobium trifolii Expressed in Different Rhizobial Species and Agrobacterium tumefaciens, Nature 291:351 (1981).CrossRefGoogle Scholar
  37. 37.
    J. Stanley and L. K. Dunican, Intergeneric Mobilization of Rhizobium nif Genes to Agrobacterium and Klebsiella, Molec. Gen. Genet. 174:211 (1979).PubMedCrossRefGoogle Scholar
  38. 38.
    P. E. Bishop, F. B. Dazzo, E. R. Appelbaum, R. J. Maier, and W. J. Brill, Intergeneric Transfer of Genes Involved in the Rhizobium-Legume Symbiosis, Science 198; 938 (1977).PubMedCrossRefGoogle Scholar
  39. 39.
    W. J. Page, Transformation of Azotobacter vinelandii Strains Unable to Fix Nitrogen with Rhizobium spp. DNA, Can. J. Microbiol, 24:209 (1978).PubMedCrossRefGoogle Scholar
  40. 40.
    A. W. B. Johnston, M. J. Bibb, and J. E. Beringer, Tryptophan Genes in Rhizobium: Their Organization and Their Transfer to Other Bacterial Genera, Molec. Gen. Genet. 165:323 (1978),PubMedCrossRefGoogle Scholar
  41. 41.
    R. L. Neve, R. W. West, and R. L. Rodriguez, Eucaryotic DNA Fragments Which Act as Promoters for a Plasmid Gene, Nature 277:324 (1979).PubMedCrossRefGoogle Scholar
  42. 42.
    H. U. Bernard and D. R. Helinski, Bacterial Plasmid Cloning Vehicles, in: “Genetic Engineering,” J. K. Setlow and A. Hollaender, eds., Plenum Press, New York-London, p. 133 (1980).Google Scholar
  43. 43.
    A. Piihler and W. Klipp, Fine Structure Analysis of the Gene Region for N2 Fixation (nif) of Klebsiella pneumoniae, in: “Biology of Inorganic Nitrogen and Sulfur,” H. Bothe and A. Trebst, eds., Springer Verlag, Berlin-Heidelberg-New York, p. 276 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Hauke Hennecke
    • 1
  • Martin Fuhrmann
    • 1
  1. 1.Lehrstuhl für MikrobiologieUniversität MünchenMünchen 19West Germany

Personalised recommendations