Advertisement

Iron-Molybdenum Cofactor and its Complementary Protein from Mutant Organisms

  • Barbara K. Burgess
  • William E. Newton

Abstract

In 1977, Shah and Brill isolated a stable iron- and molybdenum-containing cofactor (called FeMoco) from nitrogenase.1 This discovery has opened up new possibilities for the chemists who seek to synthesize a catalyst for N2 reduction, the biochemists who seek to understand the structure and reactivity of nitrogenase and the geneticists who wish to modify the nitrogenase system. This article reviews both the sequence of events leading up to the successful isolation of FeMoco and what has been learned subsequently about this entity and its complementary protein from mutant organisms.

Keywords

Nitrogen Fixation Nitrate Reductase Xanthine Oxidase Complementary Protein Sulfite Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. K. Shah and W. J. Brill, Isolation of an Iron-Molybdenum Cofactor from Nitrogenase, Proc. Natl. Acad. Sci. USA 74:3249 (1977).PubMedCrossRefGoogle Scholar
  2. 2.
    E. I. Stiefel, The Coordination and Bioinorganic Chemistry of Molybdenum, in: “Progress in Inorganic Chemistry”, S. Lippard, ed., John Wiley and Sons, New York, Vol. 22, p. 1 (1977).CrossRefGoogle Scholar
  3. 3.
    M. P. Coughlan, ed., “Molybdenum and Molybdenum-Containing Enzymes”, Pergamon Press, Oxford and New York, (1980).Google Scholar
  4. 4.
    J. A. Pateman, D. J. Cove, B. M. Rever and D. B. Roberts, A Common Cofactor for Nitrate Reductase and Xanthine Dehydrogenase which also Regulates the Synthesis of Nitrate Reductase, Nature, 201:58 (1964).PubMedCrossRefGoogle Scholar
  5. 5.
    G. L. Sorger, Nitrate Reductase Electron Transport Systems in Mutant and in Wild-type Strains of Neurospora, Biochim. Biophys. Acta 118:484 (1966).PubMedGoogle Scholar
  6. 6.
    A. Nason and H. Evans, Triphosphopyridine Nucleotide — Nitrate Reductase in Neuròspora, J. Biol. Chem. 202:655 (1953).PubMedGoogle Scholar
  7. 7.
    D. Nicholas and A. Nason, Mechanism of Action of Nitrate Reductase from Neuro spora, J. Biol. Chem. 211:183 (1954).PubMedGoogle Scholar
  8. 8.
    D. Nicholas and A. Nason, Molybdenum and Nitrate Reductase. II. Molybdenum as a Constituent of Nitrate Reductase, J. Biol. Chem. 207:353 (1954).PubMedGoogle Scholar
  9. 9.
    D. Nicholas, A. Nason and W. McElroy, Molybdenum and Nitrate Reductase. I. Effect of Molybdenum Deficiency on the Neurospora Enzyme, J. Biol. Chem. 207:341 (1954).PubMedGoogle Scholar
  10. 10.
    S. Kinsky and W. McElroy, Neurospora Nitrate Reductase: The Role of Phosphate, Flavin and Cytochrome c Reductase, Arch. Biochem. Biophys. 73:466 (1958).PubMedCrossRefGoogle Scholar
  11. 11.
    R. Garrett and A. Nason, Involvement of a B-Type Cytochrome in the Assimilatory Nitrate Reductase of Neurospora crassa, Proc. Natl. Acad. Sci. USA 58:1603 (1967).PubMedCrossRefGoogle Scholar
  12. 12.
    R. Garrett and A. Nason, Further Purification and Properties of Neurospora Nitrate Reductase, J. Biol. Chem. 244:2870 (1969).PubMedGoogle Scholar
  13. 13.
    N. K. Amy, R. H. Garrett and B. M. Anderson, Reactions of the Neurospora crassa Nitrate Reductase with NAD(P) Analogues, Biochim. Biophys. Acta 480:83 (1977).PubMedGoogle Scholar
  14. 14.
    S.-S. Pan, R. H. Erickson, K.- Y. Lee and A. Nason, Molybdenum-Containing Component Shared by the Molybdenum Enzymes as Indicated by the In Vitro Assembly of Assimilatory Nitrate Reductase Using the Neurospora Mutant Nit-1, in: “Proc. First Intl. Symp. Nitrogen Fixation”, W. E. Newton and C. J. Nyman, eds., Washington State University Press, Pullman, Vol. 1, p. 293 (1976).Google Scholar
  15. 15.
    A. Nason, A. D. Antoine, P. A. Ketchum, W. A. Frazier III and D.-K. Lee, Formation of Assimilatory Nitrate Reductase by In Vitro Intercistronic Complementation in Neurospora crassa, Proc. Natl. Acad. Sci. USA 65:137 (1970).PubMedCrossRefGoogle Scholar
  16. 16.
    P.A. Ketchum, H. Y. Cambier, W. A. Frazier III, C. H. Madansky and A. Nason, In Vitro Assembly of Neurospora Assimilatory Nitrate Reductase from Protein Subunits of a Neurospora Mutant and the Xanthine Oxidizing or Aldehyde Oxidase Systems of Higher Animals, Proc. Natl. Acad. Sci. USA 66:1016 (1970).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Nason, K.- Y. Lee, S.- S. Pan, P. A. Ketchum, A. Lamberti and J. DeVries, In Vitro Formation of Assimilatory Reduced Nicotinamide Adenine Dinucleotide Phosphate: Nitrate Reductase from a Neurospora Mutant and a Component of Molybdenum-Enzymes, Proc. Natl. Acad. Sci. USA 68:3242 (1971).PubMedCrossRefGoogle Scholar
  18. 18.
    P.A. Ketchum and R. S. Swarin, InVitro Formation of Assimilatory Nitrate Reductase: Presence of the Constitutive Component in Bacteria, Biochem. Biophys. Res. Comm. 52:1450 (1973).PubMedCrossRefGoogle Scholar
  19. 19.
    P. A. Ketchum and C. L. Sevilla, In Vitro Formation of Nitrate Reductase Using Extracts of the Nitrate Reductase Mutant of Neurospora crassa Nit-1 and Rhodospirillum rubrum, J. Bac-teriol. 116:600 (1973).Google Scholar
  20. 20.
    K.-Y. Lee, S.- S. Pan, R. Erickson and A. Nason, Involvement of Molybdenum and Iron in the In Vitro Assembly of Assimilatory Nitrate Reductase Utilizing Neurospora Mutant Nit-1, J. Biol. Chem. 249:3941 (1974).PubMedGoogle Scholar
  21. 21.
    K.-Y. Lee, R. Erickson, S.-S. Pan, G. Jones, F. May and A. Nason, Effect of Tungsten and Vanadium on the In Vitro Assembly of Assimilatory Nitrate Reductase Utilizing Neurospora Mutant Nit-1, J. Biol. Chenu 249:3953 (1974).Google Scholar
  22. 22.
    P. A. Ketchum and R. J. Downey, In Vitro Restoration of Nitrate Reductase: Investigation of Aspergillus nidulans and Neuro-spora crassa Nitrate Reductase Mutants, Biochem. Biophys. 385:354 (1975).Google Scholar
  23. 23.
    R. H. Garrett and D. J. Cove, Formation of NADPH-Nitrate Reductase Activity In Vitro from Aspergillus nidulans niaD and cnx Mutants, Mol. Gen. Genet. 149:179 (1976).PubMedCrossRefGoogle Scholar
  24. 24.
    R. R. Mendel and A. J. Müller, Reconstitution of NADH-Nitrate Reductase In Vitro from Nitrate Reductase-Deficient Nico-tiana tobacum Mutants, Mol. Gen. Genet. 161:77 (1978).CrossRefGoogle Scholar
  25. 25.
    J. L. Johnson, The Molybdenum Cofactor Common to Nitrate Reductase, Xanthine Dehydrogenase and Sulfite Oxidase, in: “Molybdenum and Molybdenum-Containing Enzymes”, M. P. Coughlin, ed., Pergamon Press, New York, p. 347 (1980).Google Scholar
  26. 26.
    G. Rutlidge, B. Notton and E. Hewitt, Reconstitution In Vitro of Nitrate Reductase from Apoprotein of Molybdenum-Deficient Spinach, Biochem. Soc. Trans. 4:17 (1976).Google Scholar
  27. 27.
    E. J. Hewitt, B. A. Notton and G. J. Rucklidge, Formation of Nitrate Reductase by Recombination of Apoprotein Fractions from Molybdenum Deficient Plants with a Molybdenum-Containing Complex, J. Less-Common Metals 54:537 (1977).CrossRefGoogle Scholar
  28. 28.
    J. L. Johnson, H. P. Jones and K. V. Rajagopalan, In Vitro Reconstitution of Demolybdosulfite Oxidase by a Molybdenum Co-factor from Rat Liver and Other Sources, J. Biol. Chem. 252:4994 (1977).PubMedGoogle Scholar
  29. 29.
    A. Kondorosi, I. Barabas, Z. Suab, L. Orosz and T. Sik, Evidence for Common Genetic Determinants of Nitrogenase and Nitrate Reductase in Rhizobium meliloti, Nature New Biology 246:153 (1973).PubMedGoogle Scholar
  30. 30.
    J. D. Pagan, W. R. Scowcroft, W. F. Dudman and A. H. Gibson, Nitrogen Fixation in Nitrate Reductase-Deficient Mutants of Cultured Rhizobia, J. Bacteriol. 129:718 (1977).PubMedGoogle Scholar
  31. 31.
    H. H. Nagatani, V. K. Shah and W. J. Brill, Activation of In-Active Nitrogenase by Acid Treated Component I, J. Bacteriol. 120:697 (1974).PubMedGoogle Scholar
  32. 32.
    H. H. Nagatani, The Role of Molybdenum in Nitrogenase, Ph.D. Thesis, University of Wisconsin, University Microfilms, Ann Arbor, MI, Publication No. 7, (1975).Google Scholar
  33. 33.
    R. T. St. John, M. Johnson, C. Seidman, D. Garfinkel, J. K. Gordon, V. K. Shah and W. J. Brill, Biochemistry and Genetics of Klebsiella pneumoniae Mutant Strains Unable to Fix N2, J. Bacteriol. 121:759.Google Scholar
  34. 34.
    R. A. Dixon, C. Kennedy, A. Kondorosi, V. Krishnapillai and M. Merrick, Complementation Analysis of Klebsiella pneumoniae Mutants Defective in Nitrogen Fixation, Mol. Gen. Genet. 157:189 (1977).PubMedCrossRefGoogle Scholar
  35. 35.
    C. Kennedy and J. R. Postgate, Expression of Klebsiella pneumoniae Nitrogen Fixation Genes in Nitrate Reductase Mutants of Escherichia coli, J. Gen. Microbiol. 98:551 (1977).PubMedGoogle Scholar
  36. 36.
    G. P. Roberts, T. MacNeil, D. MacNeil and W. J. Brill, Regulation and Characterization of Protein Products Coded by the Nif (Nitrogen Fixation) Genes of Klebsiella pneumoniae, J. Bacteriol. 136:267 (1977).Google Scholar
  37. 37.
    T. MacNeil, D. MacNeil, G. P. Roberts, M. A. Supiano and W. J. Brill, Fine Structure Mapping and Complementation Analysis of Nif (Nitrogen Fixation) Genes in Klebsiella pneumoniae, J. Bacteriol. 136:253 (1978).PubMedGoogle Scholar
  38. 38.
    P. T. Pienkos, V. K. Shah and W. J. Brill, Molybdenum Cofactors from Molybdoenzymes and In Vitro Reconstitution of Nitrogenase and Nitrate Reductase (Xanthine Oxidase), Proc. Natl. Acad. Sci. USA 74:5468 (1977).PubMedCrossRefGoogle Scholar
  39. 39.
    B. B. Elliott, Studies on the Role of Molybdenum in Nitrogen Fixation, Ph. D. Thesis, Purdue University, University Microfilms, Ann Arbor, MI, Publication No. 76–15403 (1976).Google Scholar
  40. 40.
    B. K. Burgess, D. B. Jacobs and E. I. Stiefel, Large Scale Purification of High Activity Azotobacter vinelandii Nitrogenase, Biochim. Biophys. Acta 614:196 (1980).PubMedGoogle Scholar
  41. 41.
    S. P. Cramer, W. O. Gillum, K. O. Hodgson, L. E. Mortenson, E. I. Stiefel, J. R. Chisnell, W. J. Brill and V. K. Shah, The Molybdenum Site of Nitrogenase 2. A Comparative Study of Mo-Fe Proteins and the Iron-Molybdenum Cofactor by X-ray Absorption Spectroscopy, J. Am. Chem. Soc. 100:3814 (1978).CrossRefGoogle Scholar
  42. 42.
    S. P. Cramer, K. O. Hodgson, W. O. Gillum and L. E. Mortenson, The Molybdenum Site of Nitrogenase. Preliminary Structural Evidence from X-ray Absorption Spectroscopy, J. Am. Chem. Soc. 100:3398 (1978).CrossRefGoogle Scholar
  43. 43.
    T. D. Tullius, D. M. Kurtz Jr., S. D. Conradson and K. O. Hodgson, The Molybdenum Site of Xanthine Oxidase. Structural Evidence from X-ray Absorption Spectroscopy, J. Am. Chem. Soc. 101:2776 (1979);CrossRefGoogle Scholar
  44. 43a.
    J. Bordas, R. C. Bray, C. D. Garner, S. Gutteridge and S. S. Hasnain, X-ray Absorption Spectroscopy of Xanthine Oxidase, Biochem. J. 191:499 (1980).PubMedGoogle Scholar
  45. 44.
    S. P. Cramer, H. B. Gray and K. V. Rajagopalan, The Molybdenum Site of Sulfite Oxidase. Structural Information from X-ray Absorption Spectroscopy, J. Am. Chem. Soc. 101:2772 (1979).CrossRefGoogle Scholar
  46. 45.
    P. T. Pienkos, V. K. Shah and W. J. Brill, Molybdenum in Nitrogenase, in: “Molybdenum and Molybdenum-Containing Enzymes”, M. P. Coughlin, ed., Pergamon Press, New York, p. 385 (1980).Google Scholar
  47. 46.
    C. Kennedy, F. Cannon, M. Cannon, R. Dixon, S. Hill, J. Jensen, S. Kumar, P. McLean, M. Merrick, R. Robson and J. Postgate, Recent Advances in the Genetics and Regulation of Nitrogen Fixation, in: “Current Perspectives in Nitrogen Fixation”, A. H. Gibson and W. E. Newton, eds., Australian Academy of Science, Canberra, Australia, p. 146 (1981).Google Scholar
  48. 47.
    N. K. Amy and K. V. Rajagopalan, Characterization of Molybdenum Cofactor from Escherichia coli, J. Bacteriol. 140:114 (1979).PubMedGoogle Scholar
  49. 48.
    J. L. Johnson and B. E. Hainline and K. V. Rajagopalan, Characterization of the Molybdenum Cofactor of Sulfite Oxidase, Xanthine Oxidase and Nitrate Reductase, J. Biol, Chem. 255:1783 (1980).Google Scholar
  50. 49.
    C. McKenna, N. P. L’vov, V. L. Ganelin, N. S. Sergeev and V. L. Kretovich, Existence of a Low-Molecular-Weight Factor Common to Various Molybdenum Containing Enzymes, Doklady Akad. Nauk SSSR 217:223 (1972).Google Scholar
  51. 50.
    V. L. Ganelin, N. P. L’vov, N. S. Sergeev, G. L. Shaposhnikov and V. L. Kretovich, Isolation and Properties of a Molybdenum-Containing Peptide from Component I of the Nitrogen-Fixing Complex of Azotobacter vinelandii, Doklady Akad. Nauk SSSR 206:1236 (1972).Google Scholar
  52. 51.
    N. P. L’vov, V. L. Ganelin, Z. Alikubu and V. L. Kretovich, On the Nature of the Low Molecular Weight Factor Common to Molybdenum-Containing Enzymes, Izvest. Akad. Nauk SSSR, Ser. Biol, p. 371 (1975).Google Scholar
  53. 52.
    W. G. Zumft, Die Abtrennung nie der Molekularer Komponenten aus dem Molybdan-Eisen-Protein der Nitrogenase von Clostridium pasteurianum, Ber. Deutsch. Bot. Ges. 87:135 (1974).Google Scholar
  54. 53.
    W. G. Zumft, Isolation of Thiomolybdate Compounds from the Molybdenum-Iron Protein of Clostridial Nitrogenase, Eur. J. Biochem. 91:345 (1978).PubMedCrossRefGoogle Scholar
  55. 54.
    W. H. Orme-Johnson and R. H. Holm, Identification of Iron-Sulfur Clusters in Proteins, in: “Methods in Enzymology,” Vol. LIII, pard D, S. Fleischer and L. Packer, eds., Academic Press, New York, p. 268 and references therein, (1978).Google Scholar
  56. 55.
    B. E. Smith, Studies on the Iron-Molybdenum Cofactor from the Nitrogenase Mo-Fe Protein of Klebsiella pneumoniae, in: “Molybdenum Chemistry of Biological Significance,” W. E. Newton and S. Otsuka, eds., Plenum Press, New York, p. 127 (1980).Google Scholar
  57. 56.
    S.-S. Yang, W.-H. Pan, G. D. Friesen, B. K. Burgess, J. L. Corbin, E. I. Stiefel and W. E. Newton, Iron-Molybdenum Cofactor from Nitrogenase: Modified Extraction Methods as Probes from Composition, J. Biol. Chem. in press (1982).Google Scholar
  58. 57.
    B. K. Burgess, S.-S. Yang, C- B. You, J.- G. Li, G. D. Friesen, W.- H. Pan, E. I. Stiefel, W. E. Newton, S. D. Conradson and K. O. Hodgson, Iron-Molybdenum Cofactor and its Complementary Protein from Azotobacter vinelandii UW45, in: “Current Perspectives in Nitrogen Fixation,” A. H. Gibson and W. E. Newton, eds., Australian Academy of Science, Canberra, Australia, p. 71 (1981);Google Scholar
  59. 57a.
    W. E. Newton, J. W. McDonald, G. D. Friesen, B. K. Burgess, S. D. Conradson and K. O. Hodgson, Molybdenum-Iron-Sulfur Complexes and their Relevance to the Molybdenum Site of Nitrogenase, in: “Current Perspectives in Nitrogen Fixation,” A. H. Gibson and W. E. Newton, eds., Australian Academy of Science, Canberra, Australia, p. 30 (1981).Google Scholar
  60. 58.
    W. E. Newton, B. K. Burgess and E. I. Stiefel, Chemical Properties of the Fe-Mo Cofactor from Nitrogenase, in: “Molybdenum Chemistry of Biological Significance,” W. E. Newton and S. Otsuka, eds., Plenum Press, New York, p. 191 (1980).CrossRefGoogle Scholar
  61. 59.
    V. K. Shah, Iron-Molybdenum Cofactor of Nitrogenase, in: “Nitrogen Fixation” W. E. Newton and W. H. Orme-Johnson, eds., University Park Press, Baltimore, Vol. I, p. 237 (1980).Google Scholar
  62. 60.
    D. W. Emerich and R. H. Burris, Complementary Functioning of the Component Proteins of Nitrogenase from Several Bacteria, J. Bacteriol. 134:936 (1976).Google Scholar
  63. 61.
    D. M. Kurtz Jr., R. S. McMillian, B. K. Burgess, L. E. Mortenson and R. H. Holm, Identification of Iron-Sulfur Centers in the Iron-Molybdenum Proteins of Nitrogenase, Proc. Natl. Acad. Sci. USA 76:4986 (1979).PubMedCrossRefGoogle Scholar
  64. 62.
    J. Rawlings, V. K. Shah, J. R. Chisnell, W. J. Brill, R. Zimmerman, E. Munck and W. H. Orme-Johnson, Novel Metal Cluster in the Iron-Molybdenum Cofactor of Nitrogenase, J. Biol. Chem. 253:1001 (1978).PubMedGoogle Scholar
  65. 63.
    P. E. Brumby, R. W. Miller and V. Massey, The Content and Possible Catalytic Significance of Labile Sulfide in Some Metalloflavopriteins, J. Biol. Chem. 240:2222 (1965).PubMedGoogle Scholar
  66. 64.
    S. R. Tonsager and B. A. Averill, Difficulties in the Analysis of Acid-Labile Sulfide in Mo-S and Mo-Fe-S Systems, Anal. Biochem. 102:13 (1980).PubMedCrossRefGoogle Scholar
  67. 65.
    J. S. Chen and L. E. Mortenson, Inhibition of Methylene Blue Formation During Determination of the Acid-Labile Sulfide of Iron-Sulfur Protein Samples Containing Dithionite, Anal. Biochem. 79:157 (1977).PubMedCrossRefGoogle Scholar
  68. 66.
    W. Lovenberg, B. B. Buchanan and J. C. Rabinowitz, Studies on the Chemical Nature of Clostridial Ferredoxin, J. Biol. Chem. 238:3899 (1963).PubMedGoogle Scholar
  69. 67.
    B. E. Smith, Presented at the First International Symposium on Molybdenum Chemistry of Biological Significance, Kyoto, Japan (1979).Google Scholar
  70. 68.
    L. A. Levchenko, O. S. Poschupkina, A. P. Sadkov, S. A. Marakushev, G. M. Mikhailov and Yu. G. Borod’ko, Spectroscopic Investigation of FeMo-Cofactor. Coenzyme A as One of the Probable Components of an Active Site of Nitrogenase, Biochem. Biophys. Res. Comm. 96:1384 (1980).PubMedCrossRefGoogle Scholar
  71. 69.
    B. K. Burgess, E. I. Stiefel and W. E. Newton, Oxidation-Reduction Properties and Complexation Reactions of the Iron-Molybdenum Cofactor of Nitrogeanse, J. Biol. Chem. 255:353 (1980).PubMedGoogle Scholar
  72. 70.
    B.- K. Teo and B. A. Averill, A New Cluster Model for the FeMoco-Cofactor of Nitrogenase, Biochem. Biophys. Res. Comm. 88:2454 (1979).CrossRefGoogle Scholar
  73. 71.
    W. H. Orme-Johnson, W. D. Hamilton, T. L. Jones, M.-Y. Tso, R. H. Burris, V. K. Shah and W. J. Brill, Electron Paramagnetic Resonance of Nitrogenase and Nitrogenase Components from Clostridium pasteurianum W5 and Azotobacter vinelandii OP, Proc. Natl. Acad. Sci. USA 69:3142 (1972);PubMedCrossRefGoogle Scholar
  74. 71a.
    R. F. Zimmerman, E. Munck, W. J. Brill, V. K. Shah, M. T. Henzl, J. Rawlings and W. H. Orme-Johnson, Nitrogenase X: Mössbauer and EPR Studies on Reversibly Oxidized MoFe Protein from Azotobacter vinelandii. Nature of the Iron Centers, Biochim. Biophys. Acta 537:185 (1978);Google Scholar
  75. 71b.
    B. H. Huynh, E. Munck and W. H. Orme-Johnson, Nitrogenase XI: Mössbauer Studies on the Cofactor Centers of the MoFe Protein of A., vinelandii OP, Biochim. Biophys. Acta 576:192 (1979);PubMedGoogle Scholar
  76. 71c.
    W. H. Orme-Johnson, N. R. Orme-Johnson, C. Touton, M. Emptage, M. Henzl, J. Rawlings, K. Jacobson, J. P. Smith, W. B. Mims, B. H. Huynh, E. Munck and G. S. Jacob, Spectroscopic and Chemical Evidence for the Nature and Role of Metal Centers in Nitrogenase and Nitrate Reductase, in : “Molybdenum Chemistry of Biological Significance,” W. E. Newton and S. Otsuka, eds., Plenum Press, New York, p. 85 (1980);CrossRefGoogle Scholar
  77. 71d.
    W. H. Orme-Johnson and E. Munck, On the Prosthetic Groups of Nitrogenase, in: “Molybdenum and Molybdenum-Containing Enzymes,” M. P. Coughlan, ed., Pergamon Press, New York, p. 427 (1980).Google Scholar
  78. 72.
    W. G. Zumft, L. E. Mortenson and G. Palmer, Electron Paramagnetic Resonance Studies on Nitrogenase, Eur. J. Biochem. 46:525 (1974) and references therein.PubMedCrossRefGoogle Scholar
  79. 73.
    B. E. Smith, D. J. Lowe and R. C. Bray, Studies by Electron Paramagnetic Resonance on the Catalytic Mechanism of Nitrogenase of Klebsiella pneumoniae, Biochem. J. 135:331 (1973).PubMedGoogle Scholar
  80. 74.
    V. K. Shah and W. J. Brill, Isolation of a Molybdenum-Iron Cluster from Nitrogenase, Proc. Natl. Acad. Sci. USA, in press (1981).Google Scholar
  81. 75.
    B. E. Smith and G. Lang, Mössbauer Spectroscopy of the Nitrogenase Proteins from Klebsiella pneumoniae, Biochem. J. 137:169 (1974);PubMedGoogle Scholar
  82. 75a.
    B. E. Smith, M. J. O’Donnell, G. Lang and K. Spartalian, A Mössbauer Spectroscopic Investigation of the Redox Behavior of the Molybdenum-Iron Protein from Klebsiella pneumoniae Nitrogenase, Biochem. J. 191:449 (1980).PubMedGoogle Scholar
  83. 76.
    K. O. Hodgson, The Molybdenum Site in Nitrogenase. Structural Elucidation by X-ray Absorption Spectroscopy, in: “Nitrogen Fixation,” W. E. Newton and W. H. Orme-Johnson, eds., University Park Press, Baltimore, Vol. I, p. 261 (1980).Google Scholar
  84. 77.
    E. I. Stiefel, The Structures and Spectra of Molybdoenzyme Active Sites and Their Models, in: “Molybdenum and Molybdenum-Containing Enzymes,” M. P. Coughlan, ed., Pergamon Press, New York, p. 41 (1980).Google Scholar
  85. 78.
    V. K. Shah, L. C. Davis, J. K. Gordon, W. H. Orme-Johnson and W. J. Brill, Nitrogenase III. Nitrogenaseless Mutants of Azotobacter vinelandii: Activities, Cross-Reactions and EPR Spectra, Biochim. Biophys. Acta 293:346 (1973).Google Scholar
  86. 79.
    B. E. Smith, The Structure and Function of Nitrogenase: A Review of the Evidence for the Role of Molybdenum, J. Less-Common Metals 54:465 (1979).CrossRefGoogle Scholar
  87. 80.
    W. J. Brill and V. K. Shah, Metabolism of Molybdenum by Nitrogen-Fixing Bacteria, in: “Molybdenum Chemistry of Biological Significance,” W. E. Newton and S. Otsuka, eds., Plenum Press, New York, p. 171 (1980).CrossRefGoogle Scholar
  88. 81.
    V. K. Shah, J. R. Chisnell and W. J. Brill, Acetylene Reduction by the Iron-Molybdenum Cofactor from Nitrogenase, Biochem. Biophys. Res. Comm. 81:232 (1978).PubMedCrossRefGoogle Scholar
  89. 82.
    J. L. Corbin, N. Pariyadeth and E. I. Stiefel, Ligand Effects and Product Distributions in Molybdothiol Catalyst Systems, J. Am. Chem. Soc. 98:7862 (1976).CrossRefGoogle Scholar
  90. 83.
    G. N. Schrauzer and P. A. Doemeny, Chemical Evolution of a Nitrogenase Model. II. Molybdate-Cysteine and Related Catalysts in the Reduction of Acetylene to Olefins and Alkanes, J. Am. Chem. Soc. 93:1608 (1971).CrossRefGoogle Scholar
  91. 84.
    G. N. Schrauzer and G. Schlesinger, Chemical Evolution of a Nitrogenase Model. I. Reduction of Acetylene and Other Substrates by a Molybdenum-Thiol Catalyst System, J. Am. Chem. Soc. 92:1808 (1970).CrossRefGoogle Scholar
  92. 85.
    C. E. McKenna, T. Nakajima, J. B. Jones, C. Huang, M. C. McKenna, H. Eran and A. Osumi, Active Site Probes of Nitrogenase, in: “Molybdenum Chemistry of Biological Significance,” W. E. Newton and S. Otsuka, eds., Plenum Press, New York, p. 39 (1980).CrossRefGoogle Scholar
  93. 86.
    C. E. McKenna, J. B. Jones, H. Eran and C. W. Huang, Cyclopropene: A Functional Criterion for Evolution of Active-Site Homology between Nitrogenase and its Molybdenum-Iron Cofactor, Nature, 280:611 (1979).CrossRefGoogle Scholar
  94. 87.
    C. E. McKenna, Chemical Aspects of Nitrogenase, in: “Molybdenum and Molybdenum-Containing Enzymes,” M. P. Coughlan, ed., Pergamon Press, New York, p. 439 (1980).Google Scholar
  95. 88.
    G. D. Watt, Electrochemical and Kinetic Studies of Nitrogenase: Brief Review and Recent Developments, in: “Molybdenum Chemistry of Biological Significance,” W. E. Newton and S. Otsuka, eds., Plenum Press, New York, p. 3 (1980).CrossRefGoogle Scholar
  96. 89.
    G. D. Watt, A. Burns, S. Lough and D. Tennent, Redox and Spectroscopic Properties of Oxidized MoFe Protein from Azoto-bacter vinelandii, Biochemistry 21:4926 (1980).CrossRefGoogle Scholar
  97. 90.
    W. J. Brill, Biochemical Genetics of Nitrogen Fixation, Microbial Reviews 44:449 (1980).Google Scholar
  98. 91.
    F. M. Ausubel, Application of Recombinant DNA Technology to the Study of Nitrogen Fixation, in: “Recent Advances in Biological Nitrogen Fixation,” N. S. Subba Rao, ed., Oxford and IBH Publishing Company, New Delhi, India, p. 257 (1980).Google Scholar
  99. 92.
    P. T. Pienkos, S. Kaevickis and W. J. Brill, In Vitro Activation of Inactive Nitrogenase Component I with Molybdate, J. Bacteriol. 45:248 (1981).Google Scholar
  100. 93.
    P.E. Bishop and W. J. Brill, Genetic Analysis of Azotobactervinelandii Mutant Strains Unable to Fix Nitrogen, J. Batteriol. 130:954 (1977).Google Scholar
  101. 94.
    P. E. Bishop, P. M. L. Jarlenski and D. R. Hetherington, Evidence for an Alternative Nitrogen Fixation System in Azoto-bacter vinelandii, Proc. Natl, Acad. Sci. USA 77:7342 (1980).CrossRefGoogle Scholar
  102. 95.
    C. Elmerich, J. Houmard, L. Sibodl, I. Manheimer and N. Charpin, Genetic and Biochemical Analysis of Mutants Induced by Bacteriophage Mu DNA Integration into Klebsiella pneumoniae Nitrogen Fixation Genes, Mol. Gen. Genet. 165:181 (1978).PubMedCrossRefGoogle Scholar
  103. 96.
    M. Merrick, M. Filsen, C. Kennedy and R. Dixon, Polarity of Mutations Induced by Insertion of Transposons Tn 5, Tn 7, and Tn 10 into the Nif Gene Cluster of Klebsiella pneumoniae, Molec. Gen. Genet. 165:103 (1978).PubMedCrossRefGoogle Scholar
  104. 97.
    L. E. Mortenson and R. N. F. Thorneley, Structure and Function of Nitrogenase, Ann. Rev. Biochem. 48:387 (1979).PubMedCrossRefGoogle Scholar
  105. 98.
    W. H. Orme-Johnson and L. C. Davis, Current Topics and Problems in the Enzymology of Nitrogenase, in: “Iron-Sulfur Proteins,” W. Lovenberg, ed., Academic Press, New York, Vol. III, p. 15 (1977).Google Scholar
  106. 99.
    C. Kennedy, R. R. Eady, E. Kondorosi and P. K. Rekosh, The Molybdenum-Iron Protein of Klebsiella pneumoniae Nitrogenase. Evidence for Nonidentical Subunits from Peptide Mapping, Biochem. J. 155:383 (1976).PubMedGoogle Scholar
  107. 100.
    B. E. Smith, this volume, (1980).Google Scholar
  108. 101.
    B. E. Smith and T. R. Hawkes, Structural Studies on the MoFe Protein of Nitrogenase from Klebsiella pneumoniae (Kp1), in: “Current Perspectives in Nitrogen Fixation,” A. H. Gibson and W. E. Newton, eds., Australian Academy of Science, Canberra, Australia, p. 353 (1981).Google Scholar
  109. 102.
    P. T. Pienkos and W. J. Brill, Molybdenum Accumulation and Storage in Klebsiella pneumoniae and Azotobacter vinelandii, J. Bacteriol. 145:743 (1981).PubMedGoogle Scholar
  110. 103.
    P. A. McLean and R. A. Dixon, Requirement of nif V Gene for Production of Wild-Type Nitrogenase Enzyme in Klebsiella pneumoniae, Nature 292:655 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Barbara K. Burgess
    • 1
  • William E. Newton
    • 1
  1. 1.Charles F. Kettering Research LaboratoryYellow SpringsUSA

Personalised recommendations