Multisulfur Metal Sites in Enzymes, Complexes, Clusters, and Solids: Possible Relevance for Nitrogenase

  • Edward I. Stiefel
  • Russell R. Chianelli


This volume deals with biological nitrogen fixation and chemical systems which may offer analogy with or insight into the biological process. This chapter deals with certain biochemical and chemical systems which have not been studied specifically in the context of the nitrogen fixation problem. Rather, recent results in the areas non-nitrogenase Mo enzymes and the coordination and solid state chemistry of molybdenum are discussed. This chemistry reveals some of the structural, spectroscopic and mechanistic possibilities which present themselves when multisulfur metal sites are present.


Nitrate Reductase Xanthine Oxidase Molybdenum Disulfide Metal Site Xanthine Dehydrogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. Garrett and A. Nason, Further Purification and Properties of Neurospora Nitrate Reductase, J. Biol. Chem. 244:2810 (1969).Google Scholar
  2. 2.
    C. H. MacGregor, A A. Schnaitman, D. E. Normanseil, and M. G. Hodgins, Purification and Properties of Nitrate Reductase from Escherichia coli K12, J. Biol. Chem. 249:5321 (1974).PubMedGoogle Scholar
  3. 3.
    P. Forget, The Bacterial Nitrate Reductases: Solubilization, Purification, and Properties of the Enzyme A of Escherichia coli K12, Eur. J. Biochem. 42:325 (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    M. W. W. Adams and L. E. Mortenson, The Effect of Cyanide and Ferricyanide on the Activity of Dissimilatory Nitrate Reductase of Escherichia coli, J. Biol. Chem. 257:1791 (1982).PubMedGoogle Scholar
  5. 5.
    C.A. Nelson and P. Handler, Preparation of Bovine Xanthine Oxidase and the Subunit Structures of Some Iron Flavo Proteins, J. Biol. Chem, 243:5368 (1968).PubMedGoogle Scholar
  6. 6.
    L. I. Hart, M. A. McGartell, H. R. Chapman, and R. C. Bray, The Composition of Milk Xanthine Oxidase, Biochem. J. 116:851 (1970),PubMedGoogle Scholar
  7. 7.
    K. V. Rajagopalan, I. Fridovich, and P. Handler, Hepatic Aldehyde Oxidase: I. Purification and Properties, J. Biol. Chem. 237:922 (1962).PubMedGoogle Scholar
  8. 8.
    H. J. Cohen and I. Fridovich, Hepatic Sulfite Oxidase: Purification and Properties, J. Biol. Chem. 246:359 (1971).PubMedGoogle Scholar
  9. 9.
    H. G. Enoch and R. L. Lester, Purification and Properties of Formate Dehydrogenase and Nitrate Reductase from Escherichia coli, J. Biol. Chem. 250:6693 (1975).PubMedGoogle Scholar
  10. 10.
    P. A. Scherer and R. K. Thauer, Purification and Properties of Reduced Ferredoxin:CO2 Oxidoreductase from Clostridium pasteurianum, A Molybdenum-Iron-Sulfur Protein, Eur. J. Biochem. 85:125 (1978).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Nason, K.- Y. Lee, S.- S. Pan, P. A. Ketchum, A. Lamberti, and J. DeVries, In vitro Formation of Assimilatory Reduced Nicotinamide Adenine Dinucleotidephosphate :Nitrate Reductase from a Neurospora Mutant and a Component of Molybdenum Enzymes, Proc. Nat. Acad. Sci. USA 74:5468 (1977).CrossRefGoogle Scholar
  12. 12.
    P. Pienkos, V. K. Shah, and W. J. Brill, Molybdenum Cofactors from Molybdoenzymes and in vitro Reconstitution of Nitrogenase and Nitrate Reductase, Proc. Nat. Acad. Sci. USA 74:5468 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    B. K. Burgess, D. L. Jacobs, and E. I. Stiefel, Large-Scale Purification of High Activity Azotobacter vinelandii Nitrogenase, Biochim. Biophys. Acta 614:196 (1980).Google Scholar
  14. 14.
    L. E. Mortenson and S. Hinton, personal communication.Google Scholar
  15. 15.
    J. L. Johnson, The Molybdenum Cofactor Common to Nitrate Reductase Xanthine Dehydrogenase and Sulfite Oxidase, in: “Molybdenum and Molybdenum-Containing Enzymes,” M. P. Coughlan, ed., Pergamon Press, New York, p. 346 (1980).Google Scholar
  16. 16.
    S.- S. Yang, W. H. Pan, G. D. Friesen, B. K. Burgess, J. L. Corbin, E. I. Stiefel, and W. E. Newton, Iron-Molybdenum Cofactor from Nitrogenase: Modified Extraction Methods as Probes for Composition, J Biol. Chem. , in press.Google Scholar
  17. 17.
    G. Palmer and J. S. Olson, Concepts and Approaches to the Understanding of Electron Transfer Processes in Enzymes Containing Multiple Redox Centers, in: “Molybdenum and Molybdenum-Containing Enzymes,” M. P. Coughlan, ed., Pergamon Press, New York, p. 187 (1980).Google Scholar
  18. 18.
    S. Gutteridge and R. C. Bray, Studies by Electron Paramagnetic Resonance on the Nature and Reactions of the Molybdenum Centre of Xanthine Oxidase, in: “Molybdenum and Molybdenum-Containing Enzymes,” M. P. Coughlan, ed., Pergamon Press, New York, p. 221, (1980).Google Scholar
  19. 19.
    E. I. Stiefel, The Structure and Spectra of Molybdoenzyme Active Sites and Their Models, in: “Molybdenum and Molybdenum-Containing Enzymes,” M. P. Coughlan, ed., Pergamon Press, New York, p. 41 (1980).Google Scholar
  20. 20.
    S. P. Cramer, H. B. Gray, and K. V. Rajagopalan, The Molybdenum Site of Sulfite Oxidase: Structural Evidence from X-ray Absorption, J. Am. Chem. Soc. 101:2772 (1979).CrossRefGoogle Scholar
  21. 21.
    J. Bordas, R. C. Bray, C. D. Garner, S. Gutteridge, and S. S. Hasnaln, X-ray Absorption Spectroscopy of Xanthine Oxidase. The Molybdenum Centres of the Functional and the Desulpho Forms, Biochem. J. 191:499 (1980).PubMedGoogle Scholar
  22. 22.
    S. P. Cramer and K. O. Hodgson, X-ray Absorption Spectroscopy — A New Structural Method and Its Application in Bioinorganic Chemistry, Progr. Inorg. Chem. 25:1 (1979).CrossRefGoogle Scholar
  23. 23.
    S. P. Cramer, K. O. Hodgson, E. I. Stiefel, and W. E. Newton, A Systematic X-ray Absorption Study of Molybdenum Complexes. The Accuracy of Structural Information from Extended X-ray Absorption Fine Structure, J. Am. Chem. Soc. 100:2849 (1978).Google Scholar
  24. 24.
    S. P. Cramer, K. O. Hodgson, W. O. Gillum, and L. E. Mortenson, The Molybdenum Site of Nitrogenase Preliminary Structural Evidence from X-ray Absorption Spectroscopy, J. Am. Chem. Soc. 100:3398 (1978).CrossRefGoogle Scholar
  25. 25.
    S. P. Cramer, W. O. Gillum, K. O. Hodgson, L. E. Mortenson, E. I. Stiefel, J. R. Chisnell, W. J. Brill, and V. K. Shah, The Molybdenum Site of Nitrogenase 2. A Comparative Study of Mb-Fe Proteins and the Iron-Molybdenum Cofactor by Absorption Spectroscopy, J. Am. Chem. Soc. 100:3814 (1978).CrossRefGoogle Scholar
  26. 26.
    T. D. Tullius, D. M. Kurtz Jr., S. D. Conradson and K. O. Hodgson, The Molybdenum Site of Xanthine Oxidase. Structural Evidence from X-ray Absorption Spectroscopy, J. Am. Chem. Soc. 101:2776 (1979).CrossRefGoogle Scholar
  27. 27.
    S. P. Cramer, R. Wahl, and K. V. Rajagopalan, Molybdenum Sites of Sulfite Oxidase and Xanthine Dehydrogenase. A Comparison by EXAFS, J. Am. Chem. Soc. 103:7721 (1981).CrossRefGoogle Scholar
  28. 28.
    S. Gutteridge, S. J. Tanner, and R. C. Bray, Comparison of the Molybdenum Centres of Native and Desulpho Xanthine Oxidase. The Nature of the Cyanide Labile Sulphur Atom and the Nature of the Proton Accepting Group, Biochem. J. 175:887 (1978).PubMedGoogle Scholar
  29. 29.
    E. I. Stiefel, W. E. Newton, G. D. Watt, K. L. Hadfield, and W. A. Bulen, Molybdenum Enzymes: The Role of Electrons, Protons and Dihydrogen, in: “Advances in Chemistry Series No. 162. Bioinorganic Chemistry II,” K. N. Raymond, ed., American Chemical Society, Washington, D. C. p. 353 (1977).Google Scholar
  30. 30.
    E. I. Stiefel, Proposed Molecular Mechanism for the Action of Molybdenum in Enzymes, Proc. Nat. Acad. Sci. USA 70:788 (1973).CrossRefGoogle Scholar
  31. 31.
    B. A. Moyer and T. J. Meyer, Properties of the Oxo/Aquo System (bpy)2(py)RuO2+/(bipy)2PyRu(OH2)2+, Inorg. Chem. 20:436 (1981).CrossRefGoogle Scholar
  32. 32.
    J. M. Berg, K. O. Hodgson, S. P. Cramer, J. L. Corbin, A. Elsberry, N. Pariyadath, and E. I. Stiefel, Structural Results Relevant to the Molybdenum Sites in Xanthine Oxidase and Sulfite Oxidase. The Crystal Structures of MoO2L, L = (SCH2CH2)2NCH2CH2X with X = SCH3, N(CH3)2·, J. Am. Chem. Soc. 101:2774 (1979).CrossRefGoogle Scholar
  33. 33.
    E. I. Stiefel, K. F. Miller, A. E. Bruce, J. L. Corbin, J. M. Berg, and K. O. Hodgson, A Nonoctahedral Dioxo Molybdenum Complex with a Coordinated Partial Disulfide Bond, J. Am. Chem. Soc. 102:3624 (1980).CrossRefGoogle Scholar
  34. 34.
    E. I. Stiefel, A. E. Bruce, J. L. Corbin, J. M. Berg, D. M. Spira, and K. O. Hodgson, Six-Coordinate Dioxomolybdenum(VI) Complexes Containing a Non-Octahedral Structure with a Short Sulfur-Sulfur Distance, unpublished results.Google Scholar
  35. 35.
    A. E. Bruce, J. L. Corbin, P. L. Dahlstrom, J. R. Hyde, M. Minelli, E. I. Stiefel, J. T. Spence, and J. Zubieta, Investigations of the Coordination Chemistry of Molybdenum with Facultative Tetradentate Ligands Possessing N2S2 Donor Sets. III. The Crystal and Molecular Structures of MoP2[(SCH2CH2NMe(CH2)nNMeCH2CH2S)] n = 2 and 3 and [MoO2 (SC6H4NHCH2CH2NHC6H4S)] and a Comparison to the Structure of MoO2(SCH2CH2NHCH2CH2SCH2CH2S), a Complex with NS3 Donor Set. Inorg. Chem., in press.Google Scholar
  36. 36.
    C. D. Garner, L. Hill, N. C. Howlader, M. R. Hyde, F. E. Mabbs, and V. I. Rutledge, Crystal and Electronic Structure and Reactivity of Mononuclear Halogeno-oxomolybdenum(V) Complexes, J. Less-Common Metals 54:27 (1977).CrossRefGoogle Scholar
  37. 37.
    E. I. Stiefel, K. F. Miller, A. E. Bruce, J. Heinecke, N. Pariyadath, J. L. Corbin, J. M. Berg, and K. O. Hodgson, Mo(VI) Complexes of N,S-Donor Ligands: Relevance to Molybdenum Enzymes, in: “Molybdenum Chemistry of Biological Significance,” W. E. Newton and S. Otsuka, eds., Plenum Press, New York, p. 279 (1980).CrossRefGoogle Scholar
  38. 38.
    J. M. Berg, D. Spira, K. Wo, B. McCord, R. Lye, M. S. Co, J. Belmont, C. Barnes, K. Kosydor, S. Rayback, K. O. Hodgson, A. E. Bruce, J. L. Corbin, K. F. Miller and E. I. Stiefel, Structural Comparison of Octahedral MoO2 2+ Complexes of Bidentate and Linear Tetradentate N,S-Donor Ligands, unpublished results.Google Scholar
  39. 39.
    K. F. Miller, A. E. Bruce, N. Pariyadath, J. Heinecke, J. L. Corbin, and E. I. Stiefel, unpublished results.Google Scholar
  40. 40.
    J. M. Berg, K. O. Hodgson, A. E. Bruce, J. L. Corbin, N. Pariyadath, and E. I. Stiefel, The Crystal and Molecular Structures of Dioxo Molybdenum(VI) Complexes of Tripodal, Tetradentate N,S-Ligands, unpublished results.Google Scholar
  41. 41.
    W. H. Pan, M. E. Leonowicz, and E. I. Stiefel, Facile Routes to the Synthesis of New Mo and W Sulfido Complexes. The Structure of Mo3S92-, unpublished results.Google Scholar
  42. 42.
    W. Rittner, A. Müller, A. Neumann, W. Bather, and R. C. Sharma, Generation of the Trangulo-Group Mov-S2 in the Condensation of MoO2S2 2- to [MoV2O2S2(S2)2]2-, Angew. Chem. Int. Ed. Engl. 18:436 (1979).CrossRefGoogle Scholar
  43. 43.
    A. Müller, W. O. Nolte, and B. Krebs, [(S2)2Mo(S2) 2Mo(S2)2]2-, a Novel Complex Containing only S2 2- Ligands and a Mo-Mo Bond, Angew. Chem. Int. Ed. Engl. 17:279 (1978).CrossRefGoogle Scholar
  44. 44.
    K. F. Miller, A. E. Bruce, J. L. Corbin, S. Wherland, and E. I. Stiefel, Mo2S4 2+ Core: New Synthesis, New Complexes and Electrochemical Diversity, J Am. Chem. Soc. 102:5102 (1980).CrossRefGoogle Scholar
  45. 45.
    C. O. B. Dim, T. R. Halbert, C. McGauley, K. F. Miller, W.- H. Pan, and E. I. Stiefel, unpublished results.Google Scholar
  46. 46.
    G. J. Kubas and P. J. Vergamini, Synthesis Characterization and Reactions of Iron-Sulfur Clusters Containing the S2 Ligand: [Cp2Fe2(S2)(SR)2]0,1+, [Cp4Fe4S5]0,1+,2+ and [Cp4Fe4S6], Inorg. Chem. 20:2267 (1981).CrossRefGoogle Scholar
  47. 47.
    M. R. DuBois, D. L. DuBois, M. C. VanDerveer, and R. C. Haltiwanger, Synthesis, Structures and Reactions of Molybdenum Complexes with Sulfido and Disulfido Ligands, Inorg. Chem. 20:3064 (1981).CrossRefGoogle Scholar
  48. 48.
    M. R. DuBois, M. C. VanDerveer, D. L. DuBois, R. C. Haltiwanger, and W. K. Miller, Characterization of Reactions of Hydrogen with Coordinated Sulfido Ligands, J. Am. Chem. Soc. 102:7456 (1980).CrossRefGoogle Scholar
  49. 49.
    M. R. DuBois, R. C. Haltiwanger, D. J. Miller, and G. Glatzmaier, Characterization and Reaction Studies of Dimeric Molybdenum(III) Complexes with Bridging Dithiolate Ligands Catalytic Reduction of Acetylene to Ehtylene, J. Am. Chem. Soc. 101:5245 (1979).CrossRefGoogle Scholar
  50. 50.
    D. Seyferth and R. S. Henderson, Photochemically Induced Insertion of Acetylenes into μ-Dithiobis-(tricarbonyliron), J. Organometal. Chem. 182:C39 (1979).CrossRefGoogle Scholar
  51. 51.
    D. C. Owsley and G. K. Helmkamp, The Incorporation of Molecular Nitrogen into an Organic Molecule, J. Am. Chem. Soc. 89:4558 (1967).CrossRefGoogle Scholar
  52. 52.
    R. G. Dickenson and L. Pauling, Crystal Structure of Molybdenite, J. Am. Chem. Soc. 45:1466 (1923).CrossRefGoogle Scholar
  53. 53.
    T. P. Prasad, E. Diemann, and A. Müller, Thermal Decomposition of (NH4)2MoO2S2, (NH4)2MOS4, (NH4)2WO2S2 and (NH4)2WS4, J. Inorg. Nucl. Chem. 35:1895 (1973)CrossRefGoogle Scholar
  54. 54.
    R. R. Chianelli and M. B. Dines, Low-Temperature Solution Preparation of Group 4B, 5B and 6B Transition Metal Dichalcogenides, Inorg. Chem. 17:2758 (1978).CrossRefGoogle Scholar
  55. 55.
    F. T. Eggertsen and R. M. Roberts, Molybdenum Disulfide of High Surface Area, J. Phys. Chem. 63:1981 (1959).CrossRefGoogle Scholar
  56. 56.
    G. C. Stevens and T. Edmonds, Electron Spectroscopy for Chemical Analysis of Molybdenum Sulfides, J. Catal. 37:544 (1975).CrossRefGoogle Scholar
  57. 57.
    E. Diemann, Radiale Verteilungsfunktionen V. Strukturuntersuchungen an Nicht Kristallinem Molybdantrisulfid, Wolframtrisulfid and Molybdantriselenid, Z Anorg. Allg. Chem. 432:127 (1977).CrossRefGoogle Scholar
  58. 58.
    K. S. Liang, S. P. Cramer, D. C. Johnston, C. H. Chang, A. J. Jacobson, J.P. DeNeufville, and R. R. Chianelli, Amorphous MoS3 and WS3, J. Non-Crystalline Solids 42:345 (1980).CrossRefGoogle Scholar
  59. 59.
    J. Rijnsdorp and F. Jellinek, The Crystal Structure of Niobium Trisulfide, NbS3, J. Solid State Chem. 25:325 (1978).CrossRefGoogle Scholar
  60. 60.
    F. A. Levy, ed., “Intercalated Layered Materials,” Reidel Pub., Hingham, MA. (1979).Google Scholar
  61. 61.
    M. S. Whittingham, Intercalation Chemistry and Energy Storage, J. Solid State Chem. 29:303 (1979).CrossRefGoogle Scholar
  62. 62.
    A. Lefr and R. Schollhorn, Solvation Reactions of Layered Ternary Sulfides AxTiS2, AxNbS2, and AxTaS2, Inorg. Chem. 16:2950 (1977).CrossRefGoogle Scholar
  63. 63.
    P. Grange, Catalytic Hydrodesulfurization, Catal. Rev. Sci. Eng. 21:135 (1980).CrossRefGoogle Scholar
  64. 64.
    C. N. Satterfield, “Hererogeneous Catalysis in Practice,” McGraw-Hill Book Company, New York, p. 259 (1980).Google Scholar
  65. 65.
    S. J. Tauster, T. A. Pecoraro and R. R. Chianelli, Structure and Properties of Molybdenum Sulfide: Correlation of O2 Chemisorption with Hydrodesulfurization Activity, J. Catal. 63:515 (1980).CrossRefGoogle Scholar
  66. 66.
    C. J. Wright and C. Sampson, Hydrogen Sorption by Molybdenum Sulfide Catalysts, J. Chem. Soc. (Faraday I) 76:1583 (1980).Google Scholar
  67. 67.
    F. E. Massoth and C. L. Kibby, Studies of Molybdenum — Alumina Catalysts V Relation Between Catalyst Sulfided State and Activity for Thiophene Hydrodesulfurization, J. Catal. 47:300 (1977).CrossRefGoogle Scholar
  68. 68.
    H. Kwart, G. C. A. Schuit, and B. C. Gates, Hydrodesulfurization of Thiophenic Compounds: The Reaction Mechanism, J. Catal. 61:128 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Edward I. Stiefel
    • 1
  • Russell R. Chianelli
    • 1
  1. 1.Corporate Research Science LaboratoriesExxon Research and Engineering CompanyLindenUSA

Personalised recommendations