Overview of 95Mo NMR

  • John H. Enemark


Nuclear magnetic resonance is a powerful technique for studying the structure and dynamics of molecules in solution. Nuclear magnetic resonance experiments using 15N and 1H nuclei are discussed elsewhere in this volume and another potentially useful nucleus for NMR studies relative to nitrogen fixation is 95Mo. .The nuclear properties of 95Mo are listed in Table 1. The relatively low frequency for 95Mo, the quadrupole moment of the nucleus and the low sensitivity relative to many other common nuclei have limited the NMR investigations of this nucleus in chemical systems. An extensive review1 of heteronuclear NMR published in 1978 required only one page to tabulate and discuss all of the known NMR data for 95,97Mo. However, the recent advent of commercially available multinuclear NMR spectrometers with super-conducting magnets and moderately high fields promises to make 95Mo NMR spectroscopy more accessible. Herein, an overview of the chemical applications of 95Mo NMR is presented.


Nuclear Magnetic Resonance Nitrogen Fixation Quadrupole Moment Molybdenum Complex Molybdenum Compound 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. Harris and B. E. Mann, eds., “NMR and the Periodic Table,” Academic Press, New York (1978).Google Scholar
  2. 2.
    R. R. Void and R. L. Vold, 95Mo and 97Mo Magnetic Resonance in Aqueous Molybdate Solutions, J Magn. Res. 19:365 (1975).CrossRefGoogle Scholar
  3. 3.
    W. D. Kautt, H. Krüger, O. Lutz, H. Maier, and A. Nolle, Fourier Transform NMR Studies of 95Mo and 97Mo, Z. Naturforsch. 31a:351 (1976).Google Scholar
  4. 4.
    O. Lutz, A. Nolle, and P. Kroneck, Use of 95Mo NMR Spectroscopy as a New Approach to Structural Analysis of Diamagnetic Molybdenum Complexes, Z. Naturforsch. 31a:454 (1976).Google Scholar
  5. 5.
    O. Lutz, A. Nolle, and P. Kroneck, Use of 95Mo NMR for Identification of Molybdenum(VI) Chalcogenide Anions in Aqueous Solution, Z. Naturforsch. 32a:505 (1977).Google Scholar
  6. 6.
    S. F. Gheller, P. A. Gazzana, A. F. Master, R. T. C. Brownlee, M. J. O’Connor, A. G. Wedd, J. R. Rodgers, and M. R. Snow, Molybdenum-95 NMR of Molybdenum-Sulfur and -Selenium Species. Structural Characterization of the [(CN)CuS2MoS2]2- Anion, unpublished data.Google Scholar
  7. 7.
    K. A. Christensen, P. E. Miller, M. Minelli, T. W. Rockway, and J. H. Enemark, 95Mo NMR Spectra of Dioxomolybdenum(VI) Complexes, Inorg. Chim. Acta, in press.Google Scholar
  8. 8.
    E. I. Stiefel, K. F. Miller, A. E. Bruce, J. L. Corbin, J. M. Berg, and K. O. Hodgson, A Nonoctahedral Dioxo Molybdenum Complex with a Coordinated Partial Disulfide Bond, J. Am. Chem. Soc. 102:3624 (1980).CrossRefGoogle Scholar
  9. 9.
    A. F. Masters, R. T. C. Brownlee, M. J. O’Connor, A. G. Wedd, and J. D. Cotton, Molybdenum-95 Nuclear Magnetic Resonance. Applications to Substituted Carbonyls, J. Organomet. Chem. 195:C17 (1980).CrossRefGoogle Scholar
  10. 10.
    S. Dysart, I. Georgii, and B. E. Mann, Molybdenum-95 NMR Spectra of Some Molybdenum Carbonyl and Related Compounds, unpublished data.Google Scholar
  11. 11.
    A. F. Masters, R. T. C. Brownlee, M. J. O’Connor and A. G. Wedd, Applications of 95Mo NMR III. Arenemolybdenumtricarbonyl Derivatives, Inorg. Chem., in press.Google Scholar
  12. 12.
    H. Brunner, Chiral Metal-Atoms in Optically Active Organo-Transition Metal Compounds, Adv. Organomet. Chem. 18:151 (1980).CrossRefGoogle Scholar
  13. 13.
    M. Minelli, T. W. Rockway, J. H. Enemark, H. Brunner, and M. Muschiol, Direct Observation of Diastereomers with Opposite Mo Configurations by 95Mo NMR, unpublished results.Google Scholar
  14. 14.
    M. Minelli and J. H. Enemark, unpublished results.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • John H. Enemark
    • 1
  1. 1.Department of ChemistryUniversity of ArizonaTucsonUSA

Personalised recommendations