Advertisement

Nitrogen Fixation: Its Scope and Importance

  • William E. Newton
  • Barbara K. Burgess

Abstract

Although many factors, like climate, plant strains, herbicides, and pesticides, influence agricultural productivity, total dependence rests on photosynthesis and supply of inorganic nutrients. The essential nutrient most often limiting in crop productivity is combined or “fixed” nitrogen. Because plants do not have the capability of “fixing” nitrogen, it must be provided externally for maximal productivity. However, only a very small proportion of the nitrogen on earth (less and 0.001%) is cycling at any one time between its usable fixed form in terrestrial pools and its inert molecular form in its atmospheric pool. Nitrogen fixation controls the atmosphere-to-terrestrial (land or sea) flow, nitrification and denitrification convert ammonia to nitrate and then to nitrogen gas which is lost to the atmosphere, while leaching and erosion move fixed nitrogen between land and sea. The biological world apparently stays ahead of a nitrogen deficiency because the fixation rate is just above the denitrification rate.1

Keywords

Electron Paramagnetic Resonance Nitrogen Fixation Symbiotic Association Azotobacter Vinelandii Iron Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. E. Newton, Nitrogen Fixation, in: “Kirk-Othmer: Encyclopedia of Chemical Technology,” M. Grayson and D. Eckeroth, eds., Wiley-Interscience, New York, 3rd Edition, Vol. 15, p. 942 (1981).Google Scholar
  2. 2.
    C. C. Delwiche, The Nitrogen Cycle, Sci. Am. 223:136 (1970).CrossRefGoogle Scholar
  3. 3.
    “Fertilizer Manual,” International Fertilizer Development Center, Muscle Shoals, Ala. (1978).Google Scholar
  4. 4.
    F. A. Ernst, “Fixation of Atmospheric Nitrogen,” van Nostrand Co., New York (1928).Google Scholar
  5. 5.
    C. A. Vancini, “Synthesis of Ammonia,” CRC Press, Cleveland, Ohio (1971).Google Scholar
  6. 6.
    K. Tamaru, Developments in Ammonia Synthesis and Decomposition on Metals, in: “New Trends in the Chemistry of Nitrogen Fixation,” J. Chatt, L. M. da Câmara-Pina and R. L. Richards, eds., Academic Press, London, p. 13 (1980).Google Scholar
  7. 7.
    E. B. Fred, I. L. Baldwin, and E. McCoy, “Root Nodule Bacteria and Leguminous Plant,” Studies in Science No. 5, University of Wisconsin, Madison, Wisc. (1932).Google Scholar
  8. 8.
    P. W. Wilson, The Background, in: “Chemistry and Biochemistry of Nitrogen Fixation,” J. R. Postgate, ed., Plenum Press, London, Eng., p. 1 (1971).CrossRefGoogle Scholar
  9. 9.
    W. E. Newton and W. H. Orme-Johnson, eds., “Nitrogen Fixation,” University Park Press, Baltimore, Md. (1980).Google Scholar
  10. 10.
    W. E. Newton, J. R. Postgate, and C. Rodriguez-Barrueco, eds., “Recent Developments in Nitrogen Fixation,” Academic Press, London, Eng. (1977).Google Scholar
  11. 11.
    R. C. Burns and R. W. F. Hardy, “Nitrogen Fixation in Bacteria and Higher Plants,” Springer-Verlag, Berlin, p. 43 (1975).CrossRefGoogle Scholar
  12. 12.
    J. M. Vincent, Factors Controlling the Legume-Rhizobium Symbiosis, in: “Nitrogen Fixation,” W. E. Newton and W. H. Orme-Johnson, eds., University Park Press, Baltimore, Vol. II, p. 103 (1980).Google Scholar
  13. 13.
    A. H. Gibson, Limitation to Dinitrogen Fixation by Legumes, in; “Proceedings First Intl. Symp. on Nitrogen Fixation,” W. E. Newton and C. J. Nyman, eds., Washington State University Press, Pullman, Wash., p. 400 (1976).Google Scholar
  14. 14.
    F. B. Dazzo, Determinants of Host Specificity in the Rhizobium-Clover Symbiosis, in: “Nitrogen Fixation,” W. E. Newton and W. H. Orme-Johnson, eds., University Park Press, Baltimore, Vol. II, p. 165 (1980).Google Scholar
  15. 15.
    C. Napoli, R. Sanders, R. Carlson and P. Albersheim, Host-Symbiont Interactions: Recognizing Rhizobium, in: “Nitrogen Fixation,” W. E. Newton and W. H. Orme-Johnson, eds., University Park Press, Baltimore, Vol. II, p. 189 (1980).Google Scholar
  16. 16.
    W. Newcomb, Control of Morphogenesis and Differentiation of Pea Root Nodules, in: “Nitrogen Fixation,” W. E. Newton and W. H. Orme-Johnson, eds., University Park Press, Baltimore, Vol. II, p. 87 (1980).Google Scholar
  17. 17.
    G. E. Ham, Inoculation of Legumes with Rhizobium in Competition with Naturalized Strains, in: “Nitrogen Fixation,” W. E. Newton and W. H. Orme-Johnson, eds., University Park Press, Baltimore, Vol. II, p. 131 (1980).Google Scholar
  18. 18.
    J. C. Burton, Pragmatic Aspects of the Rhizobium-Leguminous Plant Association, in: “Proc. First Intl. Symp. on Nitrogen Fixation,” W. E. Newton and C. J. Nyman, eds., Washington State University Press, Pullman, Wash., p. 429 (1976).Google Scholar
  19. 19.
    D. L. Keister, Acetylene Reduction by Pure Cultures of Rhizobia, J. Bact. 123:1265 (1975).PubMedGoogle Scholar
  20. 20.
    W. G. W. Kurz and T. A. LaRue, Nitrogenase Activity in Rhizobia in Absence of Plant Host, Nature (London) 256:407 (1975).CrossRefGoogle Scholar
  21. 21.
    J. A. McComb, J. Elliott, and M. J. Dilworth, Acetylene Reduction by Rhizobium in Pure Culture, Nature (London) 256:409 (1975).CrossRefGoogle Scholar
  22. 22.
    J. D. Pagan, J. J. Child, W. R. Scowcroft, and A. H. Gibson, Nitrogen Fixation by Rhizobium Cultured on a Defined Medium, Nature (London) 256:406 (1975).CrossRefGoogle Scholar
  23. 23.
    J. D. Tjepkema and H. J. Evans, Nitrogen Fixation by Free-Living Rhizobium in a Defined Liquid Medium, Biochem. Biophys. Res. Comm. 65:625 (1975).PubMedCrossRefGoogle Scholar
  24. 24.
    C. A. Appleby, F. J. Bergerson, P. K. MacNicol, G. L. Turner, B. A. Wittenberg and J. B. Wittenberg, Role of Leghemoglobin in Symbiotic N2 Fixation, in: “Proc. First Intl. Symp. on Nitrogen Fixation,” W. E. Newton and C. J. Nyman, eds., Washington State University Press, Pullman, Wash., p. 274 (1976).Google Scholar
  25. 25.
    K. R. Schubert and H. J. Evans, Hydrogen Evolution: A Major Factor Affecting the Efficiency of Nitrogen Fixation in Nodulated Symbionts, Proc. Nat. Acad. Sci. USA 73:1207 (1976).PubMedCrossRefGoogle Scholar
  26. 26.
    H. J. Evans, D. W. Emerich, T. Ruiz-Argueso, R. J. Maier, and S. L. Albrecht, Hydrogen Metabolism in the Legume-Rhizobium Symbiosis, in: “Nitrogen Fixation,” W. E. Newton and W. H. Orme-Johnson, eds., University Park Press, Baltimore, Vol. II, p. 69 (1980).Google Scholar
  27. 27.
    J. W. Millbank, Associations with Blue-Green Algae, in: “The Biology of Nitrogen Fixation,” A. Quispel, ed., Elsevier, New York, p. 238 (1974).Google Scholar
  28. 28.
    J. W. Millbank, Lower Plant Associations, in: “A Treatise on Nitrogen Fixation,” R. W. F. Hardy and W. S. Silver, eds., John Wiley & Sons, Inc., New York, Section III, p. 125 (1977).Google Scholar
  29. 29.
    G. A. Peters, Blue-Green Algae and Algal Associations, Bioscience 28:580 (1978).CrossRefGoogle Scholar
  30. 30.
    W. B. Silvester, Endophyte Adaptation in Gunnera-Nostoc Symbiosis, in: “Symbiotic Nitrogen Fixation in Plants,” P. S. Nutman, eds., Cambridge University Press, London, Eng., p. 521 (1976).Google Scholar
  31. 31.
    G. A. Peters, T. B. Ray, B. C. Mayne and R. E. Toia, Jr., Azolla-Anabaena Association: Morphological and Physiological Studies, in: “Nitrogen Fixation,” W. E. Newton and W. H. Orme-Johnson, eds., University Park Press, Baltimore, Vol. II, p. 293 (1980).Google Scholar
  32. 32.
    G. Bond, The Results of the IBP Survey of Root-Nodule Formation in Non-Leguminous Angiosperms, in: “Symbiotic Nitrogen Fixation in Plants,” P. S. Nutman, ed., Cambridge University Press, London, Eng., p. 443 (1976).Google Scholar
  33. 33.
    G. Bond, Some Reflections on Alnus-Type Root Nodules, in: “Recent Developments in Nitrogen Fixation,” W. Newton, J. R. Postgate and C. Rodriguez-Barrueco, eds., Academic Press, London, Eng., p. 531 (1977).Google Scholar
  34. 34.
    J. G. Torrey, Nitrogen Fixation by Actinomycete-Nodulated Angiosperms, Bioscience 28:586 (1978).CrossRefGoogle Scholar
  35. 35.
    D. Callaham, P. Del Tredici, and J. G. Torrey, Isolation and Cultivation jln vitro of the Actinomycete Causing Root Nodulation in Comptonia, Science 199:899 (1978).PubMedCrossRefGoogle Scholar
  36. 36.
    J. Döbereiner and J. M. Day, Associative Symbioses in Tropical Grasses: Characterization of Microorganisms and Dinitrogen-Fixing Sites, in: “Proc. First Intl. Symp. on Nitrogen Fixation,” W. E. Newton and C. J. Nyman, eds., Washington State University Press, Pullman, Wash., p. 518 (1976).Google Scholar
  37. 37.
    R. H. Burris, A Synthesis Paper on Non-Leguminous N2-Fixing Systems, in: “Recent Developments in Nitrogen Fixation,” W. Newton, J. R. Postgate and C. Rodriguez-Barrueco, eds., Academic Press, London, Eng., p. 487 (1977).Google Scholar
  38. 38.
    J. F. W. von Biilow and J. Döbereiner, Potential for Nitrogen Fixation in Maize Genotypes in Brazil, Proc. Nat. Acad. Sci. USA 72:2389 (1974).CrossRefGoogle Scholar
  39. 39.
    W. E. Newton and C. J. Nyman, eds., “Proc. First Intl. Symp. on Nitrogen Fixation,” Washington State University Press, Pullman, Wash. (1976).Google Scholar
  40. 40.
    W. D. P. Stewart, eds., “Nitrogen Fixation by Free-Living Organisms,” Cambridge University Press, London, Eng. (1975).Google Scholar
  41. 41.
    A. H. Gibson and W. E. Newton, eds., “Current Perspectives in Nitrogen Fixation,” Australian Academy of Science, Canberra, Australia (1981).Google Scholar
  42. 42.
    J. E. Carnahan, L. E. Mortenson, H. F. Mower, and J. E. Castle, Nitrogen Fixation in Cell-Free Extracts of Clostridium pasteurianum, Biochim. Biophys. Acta 44:520 (1960).PubMedCrossRefGoogle Scholar
  43. 43.
    J. E. Carnahan and J. E. Castle, Nitrogen Fixation, Ann. Rev. Plant Physiol. 14:125 (1963).CrossRefGoogle Scholar
  44. 44.
    W. A. Bulen, R. C. Burns, and J. R. LeComte, Nitrogen Fixation: Hydrosulfite as Electron Donor with Cell-Free Preparations of Azotobacter vinelandii and Rhodospirillum rubrum, Proc. Nat. Acad. Sci. USA 53:532 (1965)PubMedCrossRefGoogle Scholar
  45. 45.
    L. E. Mortenson, Ferredoxin and ATP, Requirements for Nitrogen Fixation in Cell-Free Extracts of Clostridium pasteurianum, Proc. Nat. Acad. Sci. USA 52:272 (1964).PubMedCrossRefGoogle Scholar
  46. 46.
    W. A. Bulen, J. R. LeComte, R. C. Burns and J. Hinkson, Nitrogen Fixation Studies with Aerobic and Photosynthetic Bacteria, in: “Non-Heme Iron Proteins: Role in Energy Conversion,” A. San Pietro, ed., Antioch Press, Yellow Springs, Ohio, p. 261 (1965).Google Scholar
  47. 47.
    E. Knight, Jr., and R. W. F. Hardy, Flavodoxin: Chemical and Biological Properties, J. Biol. Chem. 242:1370 (1967).PubMedGoogle Scholar
  48. 48.
    J. R. Benemann, D. C. Yoch, R. C. Valentine, and D. I. Arnon, The Electron Transport System in Nitrogen Fixation by Azotobacter, I. Azotoflavin as an Electron Carrier, Proc. Nat. Acad. Sci. USA 64:1079 (1969).PubMedCrossRefGoogle Scholar
  49. 49.
    R. W. F. Hardy, R. C. Burns, and G. W. Parshall, The Biochemistry of Nitrogen Fixation, Adv. Chem. Ser. 100:219 (1971).CrossRefGoogle Scholar
  50. 50.
    W. A. Bulen and J. R. LeComte, The Nitrogenase System from Azotobacter: Two-Enzyme Requirement for N2 Reduction, ATF-Dependent H2 Evolution and ATP Hydrolysis, Proc. Nat. Acad. Sci. USA 56:979 (1966).PubMedCrossRefGoogle Scholar
  51. 51.
    G. D. Watt, W. A. Bulen, A. Burns and K. L. Hadfield, Stoichiometry, ATP/2e Values and Energy Requirements for Reactions Catalyzed by Nitrogenase from Azotobacter vinelandii, Biochemistry, 14:4266 (1975).PubMedCrossRefGoogle Scholar
  52. 52.
    R. G. Upchurch and L. E. Mortenson, In Vivo Energetics and Control of Nitrogen Fixation: Changes in the Adenylate Energy Charge and ADP/ATP Ratio of Cells during Growth on Dinitrogen versus Ammonia, J. Bacteriol. 143:274 (1980).Google Scholar
  53. 53.
    W. A. Bulen and J. R. LeComte, Nitrogenase Complex and its Components, Methods Enzymol. 24:456 (1972).PubMedCrossRefGoogle Scholar
  54. 54.
    H. Haaker and C. Veeger, Involvement of the Cytoplasmic Membrane in Nitrogen Fixation by Azotobacter vinelandii , Eur. J. Biochem. 77:1 (1977).PubMedCrossRefGoogle Scholar
  55. 55.
    L. E. Mortenson, Components of Cell-Free Extracts of Clostridium pasteurianum Required for ATP-Dependent H2 Evolution from Dithionite and for N2 Fixation, Biöchim. Biophys. Acta 127:18 (1966).PubMedCrossRefGoogle Scholar
  56. 56.
    W. H. Orme-Johnson, L. C. Davis, M. T. Henzl, B. A. Averill, N. R. Orme-Johnson, E. Miinck, and R. Zimmerman, Components and Pathways in Biological Nitrogen Fixation, in: “Recent Developments in Nitrogen Fixation,” W. E. Newton, J. R. Postgate and C. Rodriguez-Barrueco, eds., Academic Press, London, Eng., p. 131 (1977).Google Scholar
  57. 57.
    D. M. Kurtz, Jr., R. S. McMillan, B. K. Burgess, L. E. Mortenson, and R. H. Holm, Identification of Iron-Sulfur Clusters in the Iron-Molybdenum Protein of Nitrogenase, Proc. Nat. Acad. Sci. USA 76:4986 (1979).PubMedCrossRefGoogle Scholar
  58. 58.
    V. K. Shah and W. J. Brill, Isolation of an Iron-Molybdenum Cofactor from Nitrogenase, Proc. Nat. Acad. Sci. USA 74:3249 (1977).PubMedCrossRefGoogle Scholar
  59. 59.
    C. Kennedy, R. R. Eady, E. Kondorosi, and D. K. Rekosh, The Molybdenum-Iron Protein of Klebsiella pneumoniae: Evidence for Non-identical Subunits from Peptide ‘Mapping’, Biochem. J. 155:383 (1976).PubMedGoogle Scholar
  60. 60.
    W. O. Gillum, L. E. Mortenson, J.- S. Chen, and R. H. Holm, Quantitative Extrusions of the Fe4S4 Cores of the Active Sites of Ferredoxins and the Hydrogenase of Clostridium pasteurianum, J. Am. Chem. Soc. 99:584 (1977).PubMedCrossRefGoogle Scholar
  61. 61.
    L. C. Davis, V. K. Shah, and W. J. Brill, Nitrogenase VI. Acetylene Reduction Assay: Dependence of Nitrogen Fixation Estimates on Component Ratio and Acetylene Concentration, Biochim. Biophys. Acta 384:353 (1975).PubMedGoogle Scholar
  62. 62.
    V. K. Shah and W. J. Brill, Nitrogenase IV. Simple Method of Purification to Homogeneity of Nitrogenase Components from Azotobacter vinelandii, Biochim. Biophys. Acta 305:445 (1973).PubMedCrossRefGoogle Scholar
  63. 63.
    D. W. Emerich and R. H. Burris, Complementary Functioning of the Component Proteins of Nitrogenase from Several Bacteria, J. Bact. 134:936 (1978).PubMedGoogle Scholar
  64. 64.
    G. D. Watt and W. A. Bulen, Calorimetric and Electrochemical Studies on Nitrogenase, in: “Proc. First Intl. Symp. on Nitrogen Fixation,” W. E. Newton and C. J. Nyman, eds., Washington State University Press, Pullman, Wash., p. 248 (1976).Google Scholar
  65. 65.
    W. G. Zumft, G. Palmer, and L. E. Mortenson, Electron Paramagnetic Resonance Studies on Nitrogenase II. Interaction of ATP with Azoferredoxin, Biochim. Biophys. Acta 292:413 (1973).PubMedCrossRefGoogle Scholar
  66. 66.
    M.- Y. Tso and R. H. Burris, The Binding of ATP and ADP by Nitrogenase Components from Clostridium pasteurianum, Biochim. Biophys. Acta 309:263 (1973).PubMedGoogle Scholar
  67. 67.
    T. Ljones and R. H. Burris, Evidence for One-Electron Transfer by the Fe Protein of Nitrogenase, Biochem. Biophys. Res. Comm. 80:22 (1978).PubMedCrossRefGoogle Scholar
  68. 68.
    R. W. Miller, R. L. Robson, M. G. Yates, and R. R. Eady, Catalysis and Exchange of Terminal Phosphate Groups of ATP and ADP by Purified Nitrogenase Proteins, Can. J. Biochem. 58:542 (1980).PubMedCrossRefGoogle Scholar
  69. 69.
    G. D. Watt, A. Burns, and S. Lough, Redox Properties of Oxidized Mo-Fe Protein, in: “Nitrogen Fixation,” W. E. Newton and W. H. Orme-Johnson, eds., University Park Press, Baltimore, Vol. 1, p. 159 (1980).Google Scholar
  70. 70.
    G. D. Watt and A. Burns, Kinetics of Dithionite Ion Utilization and ATP Hydrolysis for Reactions Catalyzed by the Nitrogenase Complex from Azotobacter vinelandii, Biochemistry 16:264(1977).PubMedCrossRefGoogle Scholar
  71. 71.
    R. V. Hagemen and R. H. Burris, Kinetic Studies on Electron Transfer and Interaction between Nitrogenase Components from Azotobacter vinelandii, Biochemistry 17:4117 (1978).CrossRefGoogle Scholar
  72. 72.
    W. H. Orme-Johnson, W. D. Hamilton, T. Ljones, M.- Y. Tso, R. H. Burris, V. K. Shah, and W. J. Brill, Electron Paramagnetic Resonance of Nitrogenase and Nitrogenase Components from Clostridium pasteurianum W5 and Azotobacter vinelandii OP, Proc. Nat. Acad. Sci. USA 69:3142 (1972).PubMedCrossRefGoogle Scholar
  73. 73.
    B. E. Smith, D. J. Lowe, and R. C. Bray, Studies by Electron Paramagnetic Resonance on the Catalytic Mechanism of Nitrogenase of Klebsiella pneumoniae, Biochem. J. 135:331 (1973).PubMedGoogle Scholar
  74. 74.
    S. Streicher, E. Gurney, and R. C. Valentine, Transduction of the Nitrogen-Fixation Genes in Klebsiella pneumoniae, Proc. Nat. Acad. Sci. USA 68:1174 (1971).PubMedCrossRefGoogle Scholar
  75. 75.
    R. A. Dixon and J. R. Postgate, Transfer of Nitrogen Fixation Genes by Conjugation in Klebsiella pneumoniae, Nature (London) 234:47 (1971).CrossRefGoogle Scholar
  76. 76.
    R. M. Pengra and P. W. Wilson, Physiology of Nitrogen Fixation by Azotobacter aerogenes, J. Bact. 75:211 (1958).CrossRefGoogle Scholar
  77. 77.
    R. T. St. John, V. K. Shah, and W. J. Brill, Regulation of Nitrogenase Synthesis by Oxygen in Klebsiella pneumoniae, J. Bact. 119:266 (1974).Google Scholar
  78. 78.
    W. J. Brill, A. L. Steiner, and V. K. Shah, Effect of Molybdenum Starvation and Tungsten on the Synthesis of Nitrogenase Components in Klebsiella pneumoniae, J. Bact. 118:986 (1974).PubMedGoogle Scholar
  79. 79.
    G. Daesch and L. E. Mortenson, Effect of Ammonia on the Synthesis and Function of the N2-Fixing Enzyme System in Clostridium pasteurianum, J. Bact. 110:103 (1972).PubMedGoogle Scholar
  80. 80.
    D. MacNeil, T. MacNeil, and W. J. Brill, Genetic Modifications of N2-Fixing Systems, Bioscience 28:576 (1978).CrossRefGoogle Scholar
  81. 81.
    W. J. Brill, Regulation and Genetics of Bacterial Nitrogen Fixation, Ann. Rev. Microbiol. 29:109 (1975).CrossRefGoogle Scholar
  82. 82.
    W. D. Bauer, Role of Soybean Lectin in the Soybean-Rhizobium japonicum Symbiosis, in: “Nitrogen Fixation,” W. E. Newton and W. H. Orme-Johnson, eds., University Park Press, Baltimore, Vol. II, p. 205 (1980).Google Scholar
  83. 83.
    J. E. Beringer, Plasmid Transfer in Rhizobium, in: “Proc. First Intl. Symp. on Nitrogen Fixation,” W. E. Newton and C. J. Nyman, eds., Washington State University Press, Pullman, Wash., p. 358 (1976).Google Scholar
  84. 84.
    F. B. Holl and T. A. LaRue, Genetics of Legume Plant Hosts, in: “Proc. First Intl. Symp. on Nitrogen Fixation,” W. E. Newton and C. J. Nyman, eds., Washington State University Press, Pullman, Wash., p. 391 (1976).Google Scholar
  85. 85.
    R. W. Treharne, D. R. Moles, M. R. Bruce, and C. K. McKibben, Non-Conventional Manufacture of Chemical Fertilizers: Small-Scale Fertilizer Production Technology, in: “Proc. of Symp. on Fertilizer Raw Material Resources, Needs and Commerce in Asia and the Pacific,” R. P. Sheldon, S. Ahmed and Yueh-Heng Yang, eds., East-West Center, Honolulu, Hawaii, p. 55 (1980).Google Scholar
  86. 86.
    S. H. Wittwer, Agricultural Productivity and Biological Nitrogen Fixation — An International View, in: “Genetic Engineering for Nitrogen Fixation,” A. Hollaender, ed., Plenum Press, New York, p. 515 (1977).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • William E. Newton
    • 1
  • Barbara K. Burgess
    • 1
  1. 1.Charles F. Kettering Research LaboratoryYellow SpringsUSA

Personalised recommendations