Advertisement

Receptor Feedback and Dopamine Turnover in CNS

  • Göran Sedvall
Part of the Handbook of Psychopharmacology book series (HBKPS, volume 6)

Abstract

During the 1960s, histochemical, biochemical, and pharmacological evidence accumulated supporting the existence of specific dopamine (DA) containing neurons in the central nervous system (Carlsson, 1959; Hor-nykiewicz, 1964; Andén et al., 1964a, 1965a). At that time, more than 50 years had elapsed since the chemical synthesis of DA was first described by Mannich and Jacobsohn (1910). Although at an early stage DA was found to exert pharmacological effects on blood pressure and smooth muscle preparations (Barger and Dale, 1910), it was not until 1939 that Blaschko suggested a physiological role for this compound in tissue catecholamine synthesis. In his proposal for the biochemical pathway of catecholamine synthesis, Blaschko suggested DA to be the immediate precursor of norepinephrine. It was not until 1950, however, that McGoodall identified DA as a natural constituent of the heart and the adrenal gland (McGoodall, 1950a,b). Schümann (1956) demonstrated the occurrence of the compound in sympathetic nerves and ganglia. Montague (1957) was the first to present evidence for the presence of DA in the central nervous system. Up to the middle 1950s, DA was thought to play only a precursor role in the biosynthesis of norepinephrine and epinephrine.

Keywords

Tyrosine Hydroxylase Impulse Activity Homovanillic Acid Corpus Striatum Neuroleptic Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghajanian, G. K., and Bunney, B. S., 1973, Central dopaminergic neurons: Neurophysiolog-ical identification and responses to drugs, in: Frontiers in Catecholamine Research (E. Usdin and S. M. Snyder, eds.), pp. 643–648, Pergamon Press, Oxford.Google Scholar
  2. Alousi, A., and Weiner, N., 1966, The regulation of norepinephrine synthesis in sympathetic nerves: Effect of nerve stimulation/cocaine and catecholamine-releasing agents, Proc. Natl. Acad. Sci. 56:1491–1496.PubMedCrossRefGoogle Scholar
  3. Amsler, C., 1923, Beiträge zur Pharmakologie des Gehirns, Arch. Exp. Pathol. Pharmacol. 97:1–14.CrossRefGoogle Scholar
  4. AndÉn, N.-E., and Stock, G., 1973a, Effect of clozapine on the turnover of dopamine in the corpus striatum and in the limbic system, J. Pharm. Pharmacol. 25:346–348.PubMedCrossRefGoogle Scholar
  5. AndÉn, N.-E., and Stock, G., 1973a, Inhibitory effect of γ-hydroxybutyric acid and γ-aminobutyric acid on the dopamine cells in the substantia nigra, Naunyn-Schmiedebergs Arch. Pharmacol. 279:89–92.PubMedCrossRefGoogle Scholar
  6. AndÉn, N.-E., Roos, B.-E., and Werdinius, B., 1963a, On the occurrence of homovanillic acid and 3-methoxy-4-hydroxymandelic acid in human cerebrospinal fluid, Experientia 19:359–360.PubMedCrossRefGoogle Scholar
  7. AndÉn, N.-E., Roos, B.-E., and Werdinius, B., 1963b, On the occurrence of homovanillic acid in brain and cerebrospinal fluid and its determination by a fluorometric method, Life Sci. 2:448–458.CrossRefGoogle Scholar
  8. Andén, N.-E., Carlsson, A., Dahlström, A., Fuxé, K., Hillarp, N.-Å., and Larsson, K., 1964a, Demonstration and mapping out of nigro-neostriatal dopamine neurons, Life Sci. 3:523–530.CrossRefGoogle Scholar
  9. Andén, N.-E., Roos, B.-E., and Werdinius, B., 1964b, Effects of chlorpromazine, haloperidol and reserpine on the levels of phenolic acids in rabbit corpus striatum, Life Sci. 3:149–158.CrossRefGoogle Scholar
  10. Andén, N.-E., Dahlström, A., Fuxe, K., and Larsson, K., 1965a, Further evidence for the presence of nigro-neostriatal dopamine neurons in the rat, Am. J. Anat. 116:329–333.PubMedCrossRefGoogle Scholar
  11. Andén, N.-E., Magnusson, T., and Rosengren, E., 1965b, Occurrence of dihydroxyphenylalanine decarboxylase in nerves of the spinal cord and sympathetically innervated organs, Acta Physiol. Scand. 64:127–135.PubMedCrossRefGoogle Scholar
  12. Andén, N.-E., Dahlström, A., Fuxe, K., and Larsson, K., 1966a, Functional role of the nigrostriatal dopamine neurons, Acta Pharmacol. (Copenhagen) 24:263–274.CrossRefGoogle Scholar
  13. Andén, N.-E., Dahlström, A., Fuxe, K., Larsson, K., Olson, L., and Ungerstedt, U., 1966b, Ascending monoamine neurons to the telencephalon and diencephalon, Acta Physiol. Scand. 67:313–326.CrossRefGoogle Scholar
  14. Andén, N.-E., Rubenson, A., Fuxe, K., and Hökfelt, T., 1967, Evidence for dopamine receptor stimulation by apomorphine, J. Pharm. Pharmacol. 19:627–629.PubMedCrossRefGoogle Scholar
  15. Andén, N.-E., Butcher, S. G., Corrodi, H., Fuxe, K., and Ungerstedt, U., 1970, Receptor activity and turnover of dopamine and noradrenaline after neuroleptics, Eur. J. Pharmacol. 11:303–314.PubMedCrossRefGoogle Scholar
  16. Andén, N.-E., Corrodi, H., Fuxe, K., and Ungerstedt, U., 1971, Importance of nervous impulse flow for the neuroleptic induced increase in amine turnover in central dopamine neurons, Eur. J. Pharmacol. 15:193–199.PubMedCrossRefGoogle Scholar
  17. Andén, N.-E., Bédard, P., Fuxe, K., and Ungerstedt, U., 1972, Early and selective increase in brain dopamine levels after axotomy, Experientia 28:300–301.PubMedCrossRefGoogle Scholar
  18. Ashcroft, G. W., and Sharman, D. F., 1960, 5-Hydroxyindoles in human cerebrospinal fluids, Nature 186:1050–1051.PubMedCrossRefGoogle Scholar
  19. Ashcroft, G. W., and Sharman, D. F., 1962, Drug-induced changes in the concentration of 5-OH indolyl compounds in cerebrospinal fluid and caudate nucleus, Brit. J. Pharmacol. 19:153–160.PubMedGoogle Scholar
  20. Asper, H., Baggiolini, M., Burki, H. R., Lauener, H., Ruch, W., and Stille, G., 1973, Tolerance phenomena with neuroleptics: Catalepsy, apomorphine stereotypies and striatal dopamine metabolism in the rat after single and repeated administration of loxapine and haloperidol, Eur. J. Pharmacol. 22:287–294.PubMedCrossRefGoogle Scholar
  21. Atack, C. V., 1973, The determination of dopamine by a modification of the dihydroxyin-dolefluorimetric assay, Brit. J. Pharmacol. 48:699–714.CrossRefGoogle Scholar
  22. Axelrod, J., 1966, Methylation reactions in the formation and metabolism of catecholamines and other biogenic amines, Pharmacol. Rev. 18:95–113.PubMedGoogle Scholar
  23. Bagchi, S. P., and Zarycki, E. P., 1970, In vivo formation of tyrosine from phenylalanine in brain, Life Sci. 9:111–119.CrossRefGoogle Scholar
  24. Bagchi, S. P., and Zarycki, E. P., 1972, Hydroxylation of phenylalanine by various areas of brain in vitro, Biochem. Pharmacol. 21:584–589.PubMedCrossRefGoogle Scholar
  25. Bagchi, S. P., and Zarycki, E. P., 1973, Formation of catecholamines from phenylalanine in brain—Effects of chlorpromazine and catron, Biochem. Pharmacol. 22:1353–1368.PubMedCrossRefGoogle Scholar
  26. Bak, I. J., Choi, W. B., Hassler, R., Usunoff, K. G., and Wagner, A., 1974, Fine structural synaptic organization of the corpus striatum and substantia nigra in rat and cat, in: Advances in Neurology, Vol. 9 (D. B. Calne, T. N. Chase, A. Barbeau, eds.), Raven Press, New York.Google Scholar
  27. Barger, G., and Dale, H. H., 1910, Chemical structure and sympathomimetic action of amines,J. Physiol. 41:19–59.PubMedGoogle Scholar
  28. Barry, H., Steenberg, M. L., Manian, A. A., and Buckley, J. P., 1974, Effects of chlorpromazine and three metabolites on behavioral responses in rats, Psychopharmacologia 34:351–360.PubMedCrossRefGoogle Scholar
  29. Bartholini, G., and Pletscher, A., 1969, Enhancement of tyrosine hydroxylation within the brain by chlorpromazine, Experientia 25:919–920.PubMedCrossRefGoogle Scholar
  30. Bartholini, G., Haefely, W., Jalfre, M., Keller, H. H., and Pletscher, A., 1972, Effects of clozapine on cerebral catecholaminergic neurone systems, Brit. J. Pharmacol. 46:736–740.CrossRefGoogle Scholar
  31. Bass, N. H., and Lundborg, P., 1973, Postnatal development of mechanisms for the elimination of organic acids from the brain and cerebrospinal fluid system of the rat: Rapid efflux of (3H)para-aminohippuric acid following intrathecal infusion, Brain Res. 56:285–298.PubMedCrossRefGoogle Scholar
  32. Bédard, P., and Larochelle, L., 1973, Effect of section of the strionigral fibers on dopamine turnover in the forebrain of the rat, Exp. Neurol. 41:314–322.PubMedCrossRefGoogle Scholar
  33. Bertilsson, L., Atkinson, A. J., Althanus, J. R., Härfast, Å., Lindgren, J.-E., and Holmstedt, B., 1972, Quantitative determination of 5-hydroxyindole-3-acetic acid in cerebrospinal fluid by gas chromatography-mass spectrometry, Anal. Chem. 44:1434–1437.PubMedCrossRefGoogle Scholar
  34. Bertler, Å., 1961, Occurrence and localization of catecholamines in the human brain, Acta Physiol. Scand. 51:97–107.CrossRefGoogle Scholar
  35. Bertler, Å., and Rosengren, E., 1959, Occurrence and distribution of catecholamines in brain,Acta Physiol. Scand. 47:350–361.PubMedGoogle Scholar
  36. Besson, M. J., Cheramy, A., and Glowinski, J., 1971, Effects of some psychotropic drugs on dopamine synthesis in the rat striatum, J. Pharmacol. Exp. Ther. 177:196–205.PubMedGoogle Scholar
  37. Besson, M. J., Cheramy, A., Gauchy, C., and Musacchio, J., 1973a, Effects of some psychotropic drugs on tyrosine hydroxylase activity in different structures of the rat brain,Eur. J. Pharmacol. 22:181–186.PubMedCrossRefGoogle Scholar
  38. Besson, M. J., Cheramy, A., Glowinski, J., and Cauchy, C., 1973b, In vivo release of 3H-DA from the cat caudate nucleus, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 557–559, Pergamon Press, Oxford.Google Scholar
  39. Bjerkenstedt, L., Härnryd, C., and Sedvall, G., 1974, Antipsychotic effects of methylperone and thiothixene and their relation to central dopaminergic activity, In preparation.Google Scholar
  40. Björklund, A., and Nobin, A., 1973, Fluorescence histochemical and microspectrofluorometric mapping of dopamine and noradrenaline cell groups in the ratdiencephalon, Brain Res. 51:193–205.PubMedCrossRefGoogle Scholar
  41. Blanc, G., Glowinski, J., Stinus, L., and Thierry, A. M., 1973, Is cortical dopamine only the precursor of noradrenaline? Brit. J. Pharmacol. 47:648.Google Scholar
  42. Blaschko, H., 1939, The specific action of L-dopa decarboxylase, J. Physiol. 96:13–14.Google Scholar
  43. Bloom, F. E., Sims, K. L., Weitsen, H. A., Davis, G. A., and Manker, J. S., 1972, Cytochemical differentiation between monoamine oxidases and other neuronal oxidases, Advan. Biochem. Psychopharmacol. 5:243–262.Google Scholar
  44. Bobon, D. P., Janssen, P. A. J., and Bobon, J., 1970, The Neuroleptics, Karger, Basel.Google Scholar
  45. Braestrup, C., 1973, 3-Methoxy-4-hydroxyphenylethanol in the rat brain, J. Neurochem. 20:519–527.PubMedCrossRefGoogle Scholar
  46. Brown, G. M., Kriegstein, E., Dankova, J., and Hornykiewicz, O., 1972, Relationship between hypothalamic and median eminence catecholamines and thyroid.function, Neuroendocrinology 10:207–217.PubMedCrossRefGoogle Scholar
  47. Brücke, F. T., 1935, Beiträge zur Pharmakologie des Bulbocapnins, Arch. Exp. Pathol. Pharmacol. 179:504–523.CrossRefGoogle Scholar
  48. Bunney, B. S., Aghajanian, G. K., and Roth, R. H., 1973a, Comparison of effects of L-dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurons, Nature New Biol. 245:123–125.PubMedGoogle Scholar
  49. Bunney, B. S., Walters, J. R., Roth, R. H., and Aghajanian, G. K., 1973b, Dopaminergic neurons: Effect of antipsychotic drugs and amphetamine on single cell activity,J. Pharmacol. Exp. Ther. 185:560–571.PubMedGoogle Scholar
  50. Burkard, W. P., Gey, K. F., and Pletscher, A., 1967, Activation of tyrosine hydroxylation in rat brain in vivo by chlorpromazine, Nature 213:732–734.CrossRefGoogle Scholar
  51. Cannon, J. G., 1974, Chemistry of dopaminergic agonists, in: Advances in Neurology, Vol. 9 (D. B. Calne, T. N. Chase, A. Barbeau, eds.), Raven Press, New York.Google Scholar
  52. Carlsson, A., 1959, The occurrence, distribution and physiological role of catecholamines in the nervous system, Pharmacol. Rev. 11:490–493.PubMedGoogle Scholar
  53. Carlsson, A., 1973, The in vivo estimation of rates of tryptophan and tyrosine hydroxylation: Effects of alterations in enzyme environment and neuronal activity, in: Ciba Foundation Symposium, Ciba Foundation, London.Google Scholar
  54. Carlsson, A., and Hillarp, N.-A., 1956, Release of adrenaline from the adrenal medulla of rabbits produced by reserpine, Kungl. Fysiogr. Sällsk. Lund Förh. 26:No. 8.Google Scholar
  55. Carlsson, A., and Lindqvist, M., 1963, Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain, Acta Pharmacol. Toxicol. 20:140–144.CrossRefGoogle Scholar
  56. Carlsson, A., and Lindqvist, M., 1973, In vivo measurements of tryptophan and tyrosine hydroxylase activities in mouse brain, J. Neural. Trans. 23:79–91.CrossRefGoogle Scholar
  57. Carlsson, A., and Waldeck, B., 1958, A fluorimetric method for the determination of dopamine (3-hydroxytyramine), Acta Physiol. Scand. 44:293–398.PubMedCrossRefGoogle Scholar
  58. Carlsson, A., Rosengren, E., Bertler, Å., and Nilsson, J., 1957a, Effect of reserpine on the metabolism of catecholamines, in: Psychotropic Drugs (S. Garattini and V. Ghetti, eds.), Elsevier, Amsterdam.Google Scholar
  59. Carlsson, A., Lindqvist, M., and Magnusson, T., 1957b, 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antaonists, Nature 180:1200.PubMedCrossRefGoogle Scholar
  60. Carlsson, A., Lindqvist, M., Magnusson, T., and Waldeck, B., 1958, On the presence of 3-hydroxytyramine in brain, Science 127:471.PubMedCrossRefGoogle Scholar
  61. Carlsson, A., Falck, B., and Hillarp, N.-Å., 1962, Cellular localization of brain monoamines,Acta Physiol. Scand. 56:1–28. (Suppl 196).1Google Scholar
  62. Carlsson, A., Persson, T., Roos, B.-E., and Wâlinder, J., 1972, Potentiation of phenothizines by α-methyltyrosine in treatment of chronic schizophrenia, J. Neural Trans. 33: 83–90.CrossRefGoogle Scholar
  63. Chase, T. N., 1973, Central monoamine metabolism in man, Arch. Neurol. 29:349–351.PubMedCrossRefGoogle Scholar
  64. Cheramy, A., Besson, M. J., and Glowinski, J., 1970, Increased release of dopamine from striatal dopaminergic terminals in the rat after treatment with a neuroleptic: thioproperazine, Eur. J. Pharmacol. 10:206–214.PubMedCrossRefGoogle Scholar
  65. Cicero, T. J., Sharpe, L. G., Robins, E., and Grote, S. S., 1972, Regional distribution of tyrosine hydroxylase in rat brain, J. Neurochem. 19:2241–2243.PubMedCrossRefGoogle Scholar
  66. Clement-Cormier, Y. C., Kebabian, J. W., Petzold, G. L., and Greengard, P., 1974, Dopamine-sensitive adenylate cyclase in mammalian brain: A possible site of action of antipsychotic drugs, Proc. Natl. Acad. Sci. 71:1113–1120.PubMedCrossRefGoogle Scholar
  67. Corrodi, H., Fuxe, K., and Hökfelt, T., 1967, The effect of neuroleptics on the activity of central catecholamine neurons, Life Sci. 6:767–774.PubMedCrossRefGoogle Scholar
  68. Corrodi, H., Fuxe, K., and Ungerstedt, U., 1971, Evidence for a new type of dopamine receptor stimulating agent, J. Pharm. Pharmacol. 23:989–991.PubMedCrossRefGoogle Scholar
  69. Corrodi, H., Farnebo, L.-O., Fuxe, K., Hamberger, B., and Ungerstedt, U., 1972, ET-495 and brain catecholamine mechanisms: Evidence for stimulation of dopamine receptors,Eur. J. Pharmacol. 20:195–204.PubMedCrossRefGoogle Scholar
  70. Costa, E., and Neff, N. H., 1966, Isotopic and non-isotopic measurements of the rate of catecholamine biosynthesis, in: Biochemistry and Pharmacology of the Basal Ganglia(E. Costa, L. J. Coté, and M. D. Yahr, eds.), pp. 141–155, Raven Press, New York.Google Scholar
  71. Costa, E., Green, A. R., Koslow, S. H., LeFevre, H. F., Revuelta, A. V., and Wang, C., 1972, Dopamine and norepinephrine in noradrenergic axons: A study in vivo of their precursor product relationship by mass fragmentography and radiochemistry, Pharmacol. Rev. 24:167–190.PubMedGoogle Scholar
  72. Costall, B., and Naylor, R. J., 1973, Is there a relationship between the involvement of extrapyramidal and mesolimbic brain areas with the cataleptic action of neuroleptic agents and their clinical antipsychotic effect? Psychopharmacologia 32:161–170.PubMedCrossRefGoogle Scholar
  73. Courvoisier, S., Fournel, J., Ducrot, R., Kolsky, M., and Koetschet, P., 1953, Propriétés pharmacodynamiques du chlorhydrat de chloro-3 (diméthylamino-3’ propyl)-10 phénothiazine (4560 R.P), Arch. Int. Pharmacodyn. 92:305–361.PubMedGoogle Scholar
  74. Courvoisier, S., Ducrot, R., and Joulou, L., 1957, Nouveax aspects expérimentaux de l’activité centrale des dérivés de la phénothiazine, in: Psychotropic Drugs (S. Garattiniand V. Ghetti, eds.), pp. 373–391, Elsevier, Amsterdam.Google Scholar
  75. Coyle, J. T., 1972, Tyrosine hydroxylase in rat brain: Olfactory requirements, regional and subcellular distribution, Biochem. Pharmacol. 21:1935–1944.PubMedCrossRefGoogle Scholar
  76. Coyle, J. T., and Snyder, S. H., 1969, Catecholamine uptake by synaptosomes in homogenates of rat brain: Stereospecificity in different areas, J. Pharmacol. Exp. Ther. 170:221–231.PubMedGoogle Scholar
  77. Dahlström, A., Häggendal, J., Heiwall, P.-O., Larsson, P., and Saunders, N. R., 1974, Intra-axonal transport of neurotransmitters in mammalian neurones, in: Society for Experimental Biology Symposium 28, Cambridge University Press, in press.Google Scholar
  78. Dailey, J., Sedvall, G., and Sjöquist, B., 1972, Effect of chlorpromazine and some of its metabolites on the accumulation of homovanillic acid in brain of mice, J. Pharm. Pharmacol. 24:580–581.PubMedCrossRefGoogle Scholar
  79. Dairman, W., Christenson, J., and Udenfriend, S., 1973, Characterisation of dopadecarboxylase, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 61–67, Pergamon Press, Oxford.Google Scholar
  80. Dale, H. H., 1934, Nomenclature of fibres in the autonomic system and their effects, J. Physiol. 80:10–11.Google Scholar
  81. Doteuchi, M., Wang, C., and Costa, E., 1974, Compartmentation of dopamine in rat striatum,Mol. Pharmacol. 10:225–234.PubMedGoogle Scholar
  82. Ehringer, H., and Hornykiewicz, O., 1960, Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems, Klin. Wscher. 38:1236–1239.CrossRefGoogle Scholar
  83. Elliott, T. R., 1905, The action of adrenaline, J. Physiol. 32:401–467.PubMedGoogle Scholar
  84. Engel, J., and Lundborg, P., 1974, Regional changes in monoamine levels and in the rate of tyrosine and tryptophan hydroxylation in 4 week old offspring of the nursing mothers treated with the neuroleptic drug penfluridol, Naunym Schmiedeberg’s Arch. Pharmacol. 282:327–334.CrossRefGoogle Scholar
  85. Engelman, K., Portnoy, B., and Lovenberg, W., 1968, A sensitive and specific double isotope derivative method for the determination of catecholamines in biological specimens, Am. J. Med. Sci. 255:259–268.PubMedCrossRefGoogle Scholar
  86. Ernst, A. M., 1965a, Relation between the structure of certain methoxyphenylethylamine derivatives and the occurrence of a hypokinetic rigid syndrome, Psychopharmacologia 7:383–390.PubMedCrossRefGoogle Scholar
  87. Ernst, A. M., 1965b, Relation between the action of dopamine and apomorphine and their O-methylated derivatives upon the CNS, Psychopharmacologia 7:391–399.PubMedCrossRefGoogle Scholar
  88. Ernst, A. M., 1967, Mode of action of apomorphine and dexamphetamine on gnawing compulsion in rats, Psychopharmacologia 10:316–323.PubMedCrossRefGoogle Scholar
  89. Ernst, A. M., 1969, The role of biogenic amines in the extrapyramidal systern, Acta Physiol. Pharmacol. 15:141–154.Google Scholar
  90. Ernst, A. M., and Smelic, P. G., 1966, Site of action of dopamine and apomorphine on compulsive gnawing behaviour, Experientia 22:837–838.PubMedCrossRefGoogle Scholar
  91. Falck, B., Hillarp, N.-Å., Thieme, G., and Torp, A., 1962, Fluorescence of catecholamines and related compounds condensed with formaldehyde, J. Histochem. Cytochem. 10:348–354.CrossRefGoogle Scholar
  92. Farnebo, L.-O., 1971, On transmitter release evolved by field stimulation of monoamine neurons, Thesis, Stockholm.Google Scholar
  93. Farnebo, L.-O., and Hamberger, B., 1973, Catecholamine release and receptors in brain slices, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 589–593, Pergamon Press, Oxford.Google Scholar
  94. Faull, R. L. M., and Laverty, R., 1969, Changes in dopamine levels in the corpus striatum following lesions in the substantia nigra, Exp. Neurol. 23:332–340.PubMedCrossRefGoogle Scholar
  95. Fieschi, C., Nardini, M., and Sciannandrone, R., 1972, A single blind study upon the effects of Trivastal in Parkinson’s disease, Symposium International Trivastal, Monastir, Tunisia.Google Scholar
  96. Fri, C.-G., Wiesel, F.-A., and Sedvall, G., 1974, Simultaneous quantification of homovanillic acid and 5-hydroxyindoleacetic acid in cerebrospinal fluid by mass fragmentography, Life Sci., in press.Google Scholar
  97. Fuxe, K., 1963, Cellular localization of monoamines in the median eminence and in infundibular stem of some mammals, Acta Physiol. Scand. 58:383–384.PubMedCrossRefGoogle Scholar
  98. Fuxe, K., 1965, Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system, Acta Physiol. Scand. 64:36–85 (Suppl. 247).CrossRefGoogle Scholar
  99. Fuxe, K., Goldstein, M., Hökfelt, T., Jonsson, G., and Lidbrink, P., 1973a, Dopaminergic involvement in hypothalamic function: Extra hypothalamic and hypothalamic control. A neuroanatomical analysis, in: Advances in Neurology, Vol. 5 (F. McDowell and André Barbeau, eds.), pp. 405–419, Raven Press, New York.Google Scholar
  100. Fuxe, K., Hökfelt, T., Jonsson, G., and Löfström, A., 1973b, Recent morphological and functional studies on hypothalamic dopaminergic and noradrenergic mechanisms, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 787–794, Pergamon Press, Oxford.Google Scholar
  101. Fyrö, B., Nybäck, H., and Sedvall, G., 1972, Tyrosine hydroxylation in the rat striatum in vitro and in vivo after nigral lesion and chlorpromazine treatment, Neuropharmacology 11:531–537.PubMedCrossRefGoogle Scholar
  102. Fyrö, B., Wode-Helgodt, B., Borg, S., and Sedvall, G., 1974, The effect of chlorpromazine on homovanillic acid levels in cerebrospinal fluid of schizophrenic patients, Psychopharmacologia 35:287–294.PubMedCrossRefGoogle Scholar
  103. Gey, K. F., and Pletscher, A., 1968, Acceleration of turnover of 14C-catecholamines in rat brain by chlorpromazine, Experientia 24:335–336.PubMedCrossRefGoogle Scholar
  104. Gianutsos, G., Drawbaugh, R. B., Hynes, M. D., and Lal, H., 1974, Behavioral evidence for dopaminergic supersensitivity after chronic haloperidol, Life Sci. 14:887–898.PubMedCrossRefGoogle Scholar
  105. Goldberg, L. I., 1974, Comparison of putative dopamine receptors in blood vessels and in the central nervous system, in: Advances in Neurology, Vol. 9 (D. B. Calne, T. N. Chase, A. Barbeau, eds.), Raven Press, New York.Google Scholar
  106. Goldstein, M., Anagnoste, B., Owen, W. S., and Battista, A. F., 1966, The effects of ventromedial tegmental lesions on the biosynthesis of catecholamines in the striatum, Life Sci. 5:2171–2176.CrossRefGoogle Scholar
  107. Goldstein, M., Freedman, L. S., and Backström, T., 1970a, The inhibition of catecholamine biosynthesis by apomorphine, J. Pharm. Pharmacol. 22:716–717.CrossRefGoogle Scholar
  108. Goldstein, M., Backström, T., Ohi, Y., and Frenkel, R., 1970b, The effects of Ca++ ions on the C14-catecholamine biosynthesis from C14-tyrosine in slices from the striatum of rats, Life Sci. 9:919–924.CrossRefGoogle Scholar
  109. Gordon, R., Reid, J. V. O., Sjoerdsma, S and Udenfriend, S., 1966, Increased synthesis of norepinephrine in the rat heart on electrical stimulation of the stellate ganglion, Mol. Pharmacol. 2:606–613.Google Scholar
  110. Goridis, C., Meek, J. L., and Neff, N. H., 1972, Monoamine oxidase activity of rat spinal cord after transection, Life Sci. 11:861–866.CrossRefGoogle Scholar
  111. Guldberg, H. C., and Yates, C. M., 1969, Effects of chlorpromazine on the metabolism of catecholamines in dog brain, Brit. J. Pharmacol. 36:535–548.CrossRefGoogle Scholar
  112. Häggendahl, J., 1973, Regulation of catecholamine release, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 531–535, Pergamon Press, Oxford.Google Scholar
  113. Hamberger, B., 1967, Reserpine resistant uptake of catecholamines in isolated tissues of the rat,Acta Physiol. Scand. Suppl. 295:1–56.PubMedCrossRefGoogle Scholar
  114. Harnack, E., 1874, Ueber die Wirkungen des Apomorphins an Sängethier und am Frosch,Arch. Exp. Pathol. Pharmacol. 2:254–306.CrossRefGoogle Scholar
  115. Harris, J. E., and Roth, R. H., 1971, Potassium induced acceleration of catecholamine biosynthesis in brain slices. I. A study on the mechanism of action, Mol. Pharmacol. 7:593–604.PubMedGoogle Scholar
  116. Hattori, T., McGeer, P. L., Fibiger, H. C., and McGeer, E. G., 1973, On the source of GABA-containing terminals in the substantia nigra: Electron microscopic autoradiographic and biochemical studies, Brain Res. 54:103–114.PubMedCrossRefGoogle Scholar
  117. Hökfelt, T., Fuxe, K., Johansson, O., and Ljungdahl, Å., 1974, Pharmaco-histochemical evidence of the existence of dopamine nerve terminals in the limbic cortex, Eur. J. Pharmacol. 25:108–112.PubMedCrossRefGoogle Scholar
  118. Hornykiewicz, O., 1964, Zum Frage des Verlaufs dopaminerger Neurone im Gehirn des Menschen, Wien. Klin. Wschr. 76:834–835.PubMedGoogle Scholar
  119. Hornykiewicz, O., 1966, Dopamine (3-hydroxytyramine) and brain function, Pharmacol. Rev. 18:925–964.PubMedGoogle Scholar
  120. Iversen, L. L., Horn, A. S., and Miller, R. J., 1974, Actions of dopaminergic agonists on cyclic AMP production in rat brain homogenates, in: Advances in Neurology, Vol. 9 (D. B. Calne, T. N. Chase, A. Barbeau, eds.), Raven Press, New York.Google Scholar
  121. Janssen, P. A. J., 1975, Structure-activity relationships (SAR) and drug design as illustrated with neuroleptic agents, Int. Encyclop. Pharm. et Therap., in press.Google Scholar
  122. Jarrot, B., 1973, The cellular localization of physiological role of catechol-O-methyl transferase in the body, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 113–115, Pergamon Press, Oxford.Google Scholar
  123. Javoy, F., and Glowinski, J., 1971, Dynamic characteristics of the “functional compartment” of dopamine in dopaminergic terminals of the rat striatum, J. Neurochem. 18:1305–1311.PubMedCrossRefGoogle Scholar
  124. Javoy, F., Hamon, M., and Glowinski, J., 1970, Disposition of newly synthesized amines in cell bodies and terminals of central catechol aminergic neurons. 1. Effect of amphetamine and thioproperazine on the metabolism of CA in the caudate nucleus, the substantia nigra and the ventromedial nucleus of the hypothalamus, Eur. J. Pharmacol. 10: 178–188.PubMedCrossRefGoogle Scholar
  125. Jenner, P., Taylor, A. R., and Campbell, D. B., 1973, Preliminary investigation of the metabolism of piribedil (ET-495); a new central dopaminergic agonist and potential anti-parkinson agent, J. Pharm. Pharmacol. 25:749–750.PubMedCrossRefGoogle Scholar
  126. Jourdan, F., Duchene-Marullaz, P., and Boissier, P., 1955, Etude expérimentale de l’action de la chlorpromazine sur le système nerveux végétatif, Arch. Int. Pharmacodyn. 101:253–278.PubMedGoogle Scholar
  127. Kaufman, S., 1973, Co-factors of tyrosine hydroxylase, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 53–60, Pergamon Press, Oxford.Google Scholar
  128. Kebabian, J. W., Petzold, G. L., and Greengard, P., 1972, Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor,” Proc. Natl. Acad. Sci. 69:2145–2149.PubMedCrossRefGoogle Scholar
  129. Kehr, W., Carlsson, A., Lindqvist, M., Magnusson, T., and Atack, C., 1972, Evidence for a receptor-mediated feedback control of striatal tyrosine hydroxylase activity, J. Pharm. Pharmacol. 24:744–747.PubMedCrossRefGoogle Scholar
  130. Kehr, W., Lindqvist, M., and Carlsson, A., 1974, Pharmacology of dopaminergic agonists, in:Advances in Neurology, Vol. 9 (D. B. Calne, T. N. Chase, A. Barbeau, eds.), Raven Press, New York.Google Scholar
  131. Kline, N. S., 1954, Use of Rauwolfia serpentina Benth. in neuropsychiatrie conditions, Ann. N.Y. Acad. Sci. 59:107–132.PubMedCrossRefGoogle Scholar
  132. Koslow, S. H., Cattabeni, F., and Costa, E., 1972, Norepinephrine and dopamine: Assay by mass fragmentography in the picomole range, Science 176:177–180.PubMedCrossRefGoogle Scholar
  133. Lahti, R. A., McAllister, B., and Wozniak, J., 1972, Apomorphine atagonism of the elevation of homovanillic acid induced by antipsychotic drugs, Life Sci. 11:605–613.CrossRefGoogle Scholar
  134. Lal, S., and Sourkes, T. L., 1972, Effect of various chlorpromazine metabolites on amphetamine-induced stereotyped behaviour in the rat, Eur. J. Pharmacol. 17:283–286.PubMedCrossRefGoogle Scholar
  135. Lal, S., Sourkes, T. L., Missala, K., and Belendiuk, G., 1972, Effects of aporphine and emetine alkaloids on central dopaminergic mechanisms in rats, Eur. J. Pharmacol. 20:71–79.PubMedCrossRefGoogle Scholar
  136. Langer, S. Z., 1973, The regulation of transmitter release elicited by nerve stimulation through a presynaptic feed-back mechanism, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 543–549, Pergamon Press, Oxford.Google Scholar
  137. Laverty, R., and Sharman, D. F., 1965, Modification by drugs of the metabolism of 3–4-dihydroxyphenylethylamine, noradrenaline and 5-hydroxytryptamine in the brain,Brit. J. Pharmacol. Chemother. 24:759–772.Google Scholar
  138. Lewitt, M., Gibb, J. W., Daly, J. W., Lipton, M., and Udenfriend, S., 1967, A new class of tyrosine hydroxylase inhibitors and a simple assay of inhibition in vivo, Biochem. Pharmacol. 16:1313–1321.CrossRefGoogle Scholar
  139. Libet, B., and Owman, C., 1974, Concomitant changes in formaldehyde-induced fluorescence of dopamine interneurones and in slow inhibitory postsynaptic potentials of the rabbit superior cervical ganglion, induced by stimulation of the preganglionic nerve or by a muscarinic agent, J. Physiol. 237:635–662.PubMedGoogle Scholar
  140. Lidbrink, P., Jonsson, G., and Fuxe, K., 1974, Selective reserpine-resistant accumulation of catecholamines in central dopamine neurons after DOPA administration, Brain Res. 67:439–456.PubMedCrossRefGoogle Scholar
  141. Lindvall, O., and Björklund, A., 1974, The organization of the ascending catecholamine neuron systems in the rat brain, Acta Physiol. Scand. Suppl. 412:1.PubMedGoogle Scholar
  142. Lindvall, O., Björklund, A., Nobin, A., and Stenevi, U., 1974, The adrenergic innervation of the rat thalamus as revealed by the glyoxylic acid fluorescence method, J. Comp. Neurol. 154:317–348.PubMedCrossRefGoogle Scholar
  143. Loewi, O., 1921, Ueber humorole Uebertragbarkeit der Herznervenwirkung, Arch. Ges. Physiol. 189:239–242.CrossRefGoogle Scholar
  144. Maeda, T., and Shimizu, N., 1972, Projections ascendantes du locus coeruleus et d’autres neurones aminergiques pontiques au niveau du prosencéphale du rat, Brain Res. 36:19–35.PubMedCrossRefGoogle Scholar
  145. Mannich, C., and Jacobsohn, W., 1910, Ueber Oxyphenyl-alkylamine und Dioxyphenyl-alkylamine, Ber. Deutsch. Chem. Ges. 43:189–197.CrossRefGoogle Scholar
  146. Martin, I. L., and Ansell, G. B., 1973, A sensitive gas chromatographic procedure for the estimation of noradrenaline, dopamine and 5-hydroxytryptamine in rat brain, Biochem. Pharmacol. 22:521–533.PubMedCrossRefGoogle Scholar
  147. McGoodall, C., 1950a, Hydroxytyramine in mammalian heart, Nature 166:738.CrossRefGoogle Scholar
  148. McGoodall, C., 1950b, Dihydroxyphenylalamin and hydroxytyramin in mammalian suprarenals, Acta Chem. Scand. 4:550.CrossRefGoogle Scholar
  149. Meek, J. L., and Neff, N. H., 1973, Biogenic amines and their metabolites as substrates for phenol sulphotransferase (E.C. 2.8.2.1) of brain and liver, J. Neurochem. 21:1–9.PubMedCrossRefGoogle Scholar
  150. Miller, R. J., and Hiley, C. R., 1974, Anti-muscarinic properties of neuroleptics and drug-induced parkinsonism, Nature 248:596–597.PubMedCrossRefGoogle Scholar
  151. Miller, R. J., and Iversen, L. L., 1974, Effects of chlorpromazine and some of its metabolites on the dopamine-sensitive adenylate cyclase of rat brain striatum, J. Pharm. Pharmacol. 26:142–144.PubMedCrossRefGoogle Scholar
  152. Miller, R. J., Horn, A. S., and Iversen, L. L., 1974, The action of neuroleptic drugs on dopamine stimulated adenosine-3’5’-monophosphate production in rat neostriatum and limbic forebrain, Mol. Pharmacol. 10:759–766.Google Scholar
  153. Montague, K. A., 1957, Catechol compounds in rat tissues and in brains of different animals,Nature 180:244–245.CrossRefGoogle Scholar
  154. Möller-Nielsen, I., Fjalland, B., Pedersen, V., and Nymark, M., 1974, Pharmacology of neuroleptics upon repeated administration, Psychopharmacologia 34:95–104.PubMedCrossRefGoogle Scholar
  155. Musacchio, J. M., and Craviso, G. L., 1973, Properties of tyrosine hydroxylase, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 47–52, Pergamon Press, Oxford.Google Scholar
  156. Nagatsu, T., Levitt, M., and Udenfriend, S., 1964, Tyrosine hydroxylase: The initial step in norepinephrine biosynthesis, J. Biol. Chem. 239:2910–2917.PubMedGoogle Scholar
  157. Neff, N. H., and Costa, E., 1967, Effect of tricyclic antidepressants and chlorpromazine on brain catecholamine synthesis, in: Proceedings of the First International Symposium on Antidepressant Drugs, pp. 28–34, Excerpta Medica Foundation, Amsterdam.Google Scholar
  158. Neff, N. H., Tozer, T. N., and Brodie, B. B., 1964, A specialized transport system to transfer 5-HIAA directly from brain to blood, Pharmacologia 6:162–167.Google Scholar
  159. Neff, N. H., Spano, P. F., Gropetti, A., Wang, C. T., and Costa, E., 1971, A simple procedure for calculating the synthesis rate of norepinephrine, dopamine and serotonin in rat brain, J.Pharmacol. Exp. Ther. 176:701–710.Google Scholar
  160. Nybäck, H., 1971a, Regional disappearance of catecholamines formed from 14C-tyrosine in rat brain: Effect of synthesis inhibitors and of chlorpromazine, Acta Pharmacol. Toxicol. 30:372–384.CrossRefGoogle Scholar
  161. Nybäck, H., 1971b, Effects of neuroleptic drugs on brain catecholamine neurons, Thesis, Stockholm.Google Scholar
  162. Nybäck, H., 1972, Effect of brain lesions and chlorpromazine on accumulation and disappearance of catecholamines formed in vivo from 14C-tyrosine, Acta Physiol. Scand. 84:54–56.PubMedCrossRefGoogle Scholar
  163. Nybäck, H., and Sedvall, G., 1968, Effect of chlorpromazine on accumulation and disappearance of catecholamines formed from tyrosine-,4C in brain, J. Pharmacol. Exp. Ther. 162:294–301.PubMedGoogle Scholar
  164. Nybäck, H., and Sedvall, G., 1969, Regional accumulation of catecholamines formed from tyrosine-14C in rat brain: Effect of chlorpromazine, Eur. J. Pharmacol. 5:245–252.PubMedCrossRefGoogle Scholar
  165. Nybäck, H., and Sedvall, G., 1970, Further studies on the accumulation and disappearance of catecholamines formed from tyrosine- 14C in mouse brain. Effect of some phenothiazine analogues, Eur. J. Pharmacol. 10:193–205.PubMedCrossRefGoogle Scholar
  166. Nybäck, H., and Sedvall, G., 1971, Effect of nigral lesion on chlorpromazine-induced acceleration of dopamine synthesis from 14C-tyrosine, J. Pharm. Pharmacol. 23:322–326.PubMedCrossRefGoogle Scholar
  167. Nybäck, H., and Sedvall, G., 1972, Effect of chlorpromazine and some of its metabolites on synthesis and turnover of catecholamines formed from 14C-tyrosine in mouse brain,Psychopharmacologia 26:155–160.PubMedCrossRefGoogle Scholar
  168. Nybäck, H., Sedvall, G., and Kopin, I. J., 1967, Accelerated synthesis of dopamine-14C from tyrosine-14C in rat brain after chlorpromazine, Life Sci. 6:2307–2312.PubMedCrossRefGoogle Scholar
  169. Nybäck, H., Borzecki, Z., and Sedvall, G., 1968, Accumulation and disappearance of catecholamines formed from tyrosine-14C in mouse brain: Effect of some psychotropic drugs, Eur. J. Pharmacol. 4:396–403.CrossRefGoogle Scholar
  170. Nybäck, H., Schubert, J., and Sedvall, G., 1970, Effect of apomorphine and pimozide on synthesis and turnover of labelled catecholamines in mouse brain, J. Pharm. Pharmacol. 22:622–624.PubMedCrossRefGoogle Scholar
  171. Nybäck, H., Wiesel, F.-A., and Sedvall, G., 1973a, Receptor regulation of dopamine turnover, in: Frontiers in Catecholamine Research (E. Usdinand, S. Snyder, eds.), pp. 601–604, Pergamon Press, Oxford .Google Scholar
  172. Nybäck, H., Sedvall, G., Sjöquist, B., and Wiesel, F.-A., 1973b, Intra va venously administered phenylalanine and tyrosine as precursors of brain catecholamines: Effect of chlorpromazine, Acta Physiol. Scand. 87:8A-9A.Google Scholar
  173. O’Keefe, R., Sharman, D. F., and Vogt, M., 1970, Effect of drugs used in psychoses on cerebral dopamine metabolism, Brit. J. Pharmacol. 38:287–304.CrossRefGoogle Scholar
  174. Olson, L., Seiger, A., and Fuxe, K., 1972, Heterogeneity of striatal and limbic dopamine innervation: Highly fluorescent islands in developing and adult rats, Brain Res. 44:283–285.PubMedCrossRefGoogle Scholar
  175. Persson, T., 1970, Drug-induced changes in 3H-catecholamine accumulation after 3H-tyrosine,Acta Pharmacol. Toxicol. 28:378–390.CrossRefGoogle Scholar
  176. Persson, T., and Roos, B.-E., 1968, Clinical and pharmacological effects of monoamine precursors or haloperidol in chronic schizophrenia, Nature 217:854.PubMedCrossRefGoogle Scholar
  177. Persson, T., and Roos, B.-E., 1969, Acid metabolites from monoamines in cerebrospinal fluid of chronic schizophrenics, Brit. J. Psychiat. 115:95–98.PubMedCrossRefGoogle Scholar
  178. Pletscher, A., Shore, P. A., and Brodie, B. B., 1955, Serotonin release as a possible mechanism of reserpine action, Science 122:374–375.PubMedCrossRefGoogle Scholar
  179. Regnier, G., Canevari, R., Laubie, M., and LeDonarec, J. C., 1968, Synthesis and vasodilator activity of new piperazine derivatives, J. Med. Chem. 11:1151–1155.PubMedCrossRefGoogle Scholar
  180. Roos, B.-E., 1969, Decrease in homovanillic acid as evidence for dopamine receptor stimulation by apomorphine in the neostriatum of the rat, J. Pharm. Pharmacol. 21:263–264.PubMedCrossRefGoogle Scholar
  181. Roos, B.-E., and Sjöström, R., 1969, 5-Hydroxyindoleacetic acid (and homovanillic acid) levels in the cerebrospinal fluid after probenecid application in patients with mani-depressive psychosis, Eur. J. Pharmacol. Clin. 1:153–155.Google Scholar
  182. Sano, I., Gamo, T., Kakimoto, Y., Taniguchi, K., Takesada, M., and Nishinuma, K., 1959, Distribution of catechol compounds in human brain, Biochim. Biophys. Acta 32:586–587.PubMedCrossRefGoogle Scholar
  183. Scatton,B., Garret, C., and Julou, L., 1974, Effect of a longacting injectable neuroleptic, the palmitic ester of pipotiazine, on dopamine metabolism in the rat striatum, Symposium on the Nigrostriatal System, CINP, IX Congress, Paris (July).Google Scholar
  184. Scheel-Kruger, J., 1972, Studies on the accumulation of O-methylated dopamine and noradrenaline in the rat brain following various neuroleptics, thymoleptics and aceperone,Arch. Int. Pharmacodyn. Ther. 195:No. 2, 372–378.PubMedGoogle Scholar
  185. Schubert, J., Nybäck, H., and Sedvall, G., 1970, Effect of antidepressant drugs on accumulation and disappearance of monoamines formed in vivo from labeled precursors in mouse brain. J. Pharm. Pharmacol. 22:136–139.PubMedCrossRefGoogle Scholar
  186. Schümann, H. J., 1956, Nachweis von Oxytyramin (Dopamin) in sympatischen Nerven und Ganglien, Arch. Pharmakol. Exp. Pathol. 277:566–573.Google Scholar
  187. Sedvall, G., 1964, Noradrenaline storage in skeletal muscle, Acta Physiol. Scand. 60:39–50.PubMedCrossRefGoogle Scholar
  188. Sedvall, G., and Nybäck, H., 1973, Effect of clozapine and some other antipsychotic agents on synthesis and turnover of dopamine formed from uC-tyrosine in mouse brain, Israel J. Med. Sci. 9:24–29.PubMedGoogle Scholar
  189. Sedvall, G., Weise, W. K., and Kopin, I. J., 1968, The rate of norepinephrine synthesis measured in vivo during short intervals; influence of adrenergic nerve impulse activity, J. Pharmacol. Exp. Ther. 159:274–282.PubMedGoogle Scholar
  190. Sedvall, G., Mayevsky, A., Fri, C.-G., Sjöquist, B., and Samuel, D., 1973, The use of stable oxygen isotopes for labelling of homovanillic acid in rat brain in vivo, Advan. Biochem. Psychopharmacol. 7:57–68.Google Scholar
  191. Sedvall, G., Fyrö, B., Nybäck, H., and Wiesel, F.-A., 1974a, Actions of dopaminergic antagonists in the striatum, in: Advances in Neurology, Vol. 9 (D. B. Calne, T. N. Chase, A. Barbeau, eds.), Raven Press, New York.Google Scholar
  192. Sedvall, G., Fyrö, B., Nybäck, H., Wiesel, F.-A., and Wode-Helgodt, B., 1974b, Mass fragmentometric determination of homovanillic acid in lumbar cerebrospinal fluid of schizophrenic patients during treatment with antipsychotic drugs, J. Psychiat. Res.,11:75–80.PubMedCrossRefGoogle Scholar
  193. Shiman, R., and Kaufman, S., 1970, Tyrosine hydroxylase (bovine adrenal glands), in: Methods in Enzymology, Vol. 17 (H. Tabor and C. W. Tabor, eds.), pp. 609–615, Academic Press, New York.Google Scholar
  194. Shiman, R., Akino, M., and Kaufman, S., 1971, Solubilization and partial purification of tyrosine hydroxylase from bovine adrenal medulla, J. Biol. Chem. 246:1330–1340.PubMedGoogle Scholar
  195. Shore, P. A., Silver, S. L., and Brodie, B. B., 1955, Interaction of reserpine, serotonin and lysergic acid diethylamide in brain, Science 122:284–285.PubMedCrossRefGoogle Scholar
  196. Sigg, E. B., Soffer, L., and Gyermek, L., 1963, Influence of imipramine and related psychoactive agents on the effect of 5-hydroxytryptamine and catecholamines on the cat nictitating membrane, J. Pharmacol. Exp. Ther. 142:13–20.PubMedGoogle Scholar
  197. Sjöquist, B., and Änggård, E., 1972, Gas chromatographic determination of homovaniliic acid in human cerebrospinal fluid by electron capture detection and by mass f ragmentography with a deuterated internal standard, Anal. Chem. 44:2297–2301.PubMedCrossRefGoogle Scholar
  198. Sjöström, R., and Roos, B.-E., 1972, 5-Hydroxyindoleacetic acid and homovanillic acid in cerebrospinal fluid in manic-depressive psychosis, Eur. J. Clin. Pharmacol. 4:170–176.PubMedCrossRefGoogle Scholar
  199. Soudijn, W., and Van Wijngaarden, I., 1972, Localization of (3H)pimozide in the rat brain in relation to its anti-amphetamine potency, J. Pharm. Pharmacol. 24:773–780.PubMedCrossRefGoogle Scholar
  200. Spano, P. F., and Neff, N. H., 1972, Metabolic fate of caudate nucleus dopamine, Brain Res. 42:139–145.PubMedCrossRefGoogle Scholar
  201. Starke, K., 1973, Regulation of catecholamine release: Alpha-receptor mediated feed-back control in peripheral and central neurones, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), p. 561–565, Pergamon Press, Oxford.Google Scholar
  202. Stille, G., 1971, Zur Pharmakologie katatoniger Stoffe, pp. 1–114, Editio Cantor, Aulendorf in Württ, Germany.Google Scholar
  203. Stjärne, L., 1973, Mechanisms of catecholamine secretion: Dual feedback control of sympathetic neurotransmitter secretion; role of calcium, in: Frontiers of Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 491–496, Pergamon Press, Oxford.Google Scholar
  204. Taylor, K. M., and Laverty, R., 1969, The metabolism of tritiated dopamine in regions of the rat brain in vivo. II, J. Neurochem. 16:1367–1376.PubMedCrossRefGoogle Scholar
  205. Thierry, A. M., Blanc, G., Sobel, A., Stinus, L., and Glowinski, J., 1973a, Dopaminergic terminals in the rat cortex, Science 182:499–501.PubMedCrossRefGoogle Scholar
  206. Thierry, A. M., Stinus, L., Blanc, G., and Glowinski, J., 1973b, Some evidence for the existence of dopaminergic neurons in the rat cortex, Brain Res. 50:230–234.PubMedCrossRefGoogle Scholar
  207. Thoenen, H., Mueller, R. E., and Axelrod, J., 1969, Increased tyrosine hydroxylase activity after drug-induced alteration of sympathetic transmission, Nature 221:1264.PubMedCrossRefGoogle Scholar
  208. Udenfriend, S., and Zaltzman-Nirenberg, P., 1963, Norepinephrine and 3,4-dihydroxyphenylethylamine turnover in guinea pig brain in vivo, Science 142:394–396.PubMedCrossRefGoogle Scholar
  209. Ungerstedt, U., 1968, 6-Hydroxy-dopamine induced degeneration of central monoamine neurons, Eur. J. Pharmacol. 5:107–110.PubMedCrossRefGoogle Scholar
  210. Ungerstedt, U., 1971, On the anatomy, pharmacology and function of the nigro-striatal dopamine system, Thesis, P. A. Norstedt, Stockholm.Google Scholar
  211. Ungerstedt, U., and Ljungberg, T., 1973, Behavioural-anatomical correlates of central catecholamine neurons, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 689–695, Pergamon Press, Oxford.Google Scholar
  212. Ungerstedt, U., Butcher, L. L., Butcher, S. G., Andén, N.-E., and Fuxé, K., 1969, Direct chemical stimulation of dopaminergic mechanisms in the neostriatum of the rat, Brain Res. 14:461–471.PubMedCrossRefGoogle Scholar
  213. Van Rossum, J. M., 1966, The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs, Arch. Int. Pharmacodyn. 160:492–494.PubMedGoogle Scholar
  214. Van Rossum, J. M., and Hurkmans, J. A. Th. M., 1964, Mechanism of action of psychomotor stimulant drugs, Int. J. Neuropharmacol. 3:227–239.CrossRefGoogle Scholar
  215. Von Euler, U. S., 1946, A specific sympathomimetic ergone in adrenergic nerve fibres (sympathin) and its relation to adrenaline and noradrenaline, Acta Physiol. Scand. 12:73–97.CrossRefGoogle Scholar
  216. Waldrop, F. N., Robertson, H. H., and Vourlekis, A., 1961, A comparison of the therapeutic and toxic effects of thioridazine and chlorpromazine in chronic schizophrenic patients,Compr. Psychiat. 2:96–105.PubMedCrossRefGoogle Scholar
  217. Walters, J. R., Roth, R. H., and Aghajanian, G. K., 1973, Dopaminergic neurons: Similar biochemical and histochemical effects of γ-hydroxybutyrate and acute lesions of the nigroneostriatal pathway, J. Pharmacol. Exp. Ther. 186:630–639.PubMedGoogle Scholar
  218. Weiner, N., 1970, Regulation of norepinephrine biosynthesis, Ann. Rev. Pharmacol. 10:273–290.PubMedCrossRefGoogle Scholar
  219. Weiner, N., Bjur, R., Lee, F.-L., and Mosimann, W. F., 1973, Studies on the mechanism of regulation of tyrosine hydroxylase activity during nerve stimulation, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 211–222, Pergamon Press, Oxford.Google Scholar
  220. Weissman, A., 1974, Chemical, pharmacological, and metabolic considerations on thiothixene, in: Thiothixene and the Thioxanthenes (I. S. Forrest, C. J. Carr, and E. Usdin, eds.), pp. 1–10, Raven Press, New York.Google Scholar
  221. Werdinius, B., 1967, Effect of probenecid on the levels of monoamine metabolites in the rat brain, Acta Pharmacol. Toxicol. 25:18–23.CrossRefGoogle Scholar
  222. Wiesel, F.-A., 1974, A mass fragmentographic method for the determination of 4-hydroxy-3-methoxyphenylethylamine and dopamine in brain tissue, in: Second International Symposium on Mass Spectrometry in Biochemistry and Medicine (A. Frigerio and N. Castagnoli, eds.), Spectrum, New York.Google Scholar
  223. Wiesel, F.-A., and Sedvall, G., 1975, Effect of antipsychotic drugs on homovanillic acid levels in striatum and olfactory tubercle of the rat, Europ. J. Pharmacol. 30:364–367.CrossRefGoogle Scholar
  224. Wiesel, F.-A., Fri, C.-G., and Sedvall, G., 1974, Simultaneous mass fragmentographic determination of 3–4-dihydroxyphenylacetic acid and 4-hydroxy-3-methoxyphenylacetic acid in brain tissue, J. Neural Trans., 35:319–326.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Göran Sedvall
    • 1
  1. 1.Department of PharmacologyKarolinska InstitutetStockholmSweden

Personalised recommendations