Acetylcholine Receptors in Vertebrate CNS

  • K. Krnjević
Part of the Handbook of Psychopharmacology book series (HBKPS, volume 6)


The presence of receptors for acetylcholine (ACh) in the vertebrate CNS can be demonstrated in several ways. In the first place, the undoubted changes in neural activity produced by direct applications of ACh provide evidence that ACh is capable of interacting with cellular elements in a functionally significant way. Second, one can extract from the CNS enzymes for which ACh is a substrate, such as cholinesterases, as well as various subcellular membrane fractions or even proteins capable of binding ACh. Moreover, a number of drugs that are known to be relatively specific antagonists of cholinergic action at other sites can be shown to bind to materials extracted from the CNS. All these facts in various degree provide evidence for the existence of receptors for ACh in the CNS.


Cortical Neuron Nicotinic Receptor Membrane Resistance Excitatory Action Cholinergic Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, P., and Curtis, D. R., 1964, The pharmacology of the synaptic and acetylcholine-induced excitation of ventrobasal thalamic neurones, Acta Physiol. Scand. 61:100–120.PubMedGoogle Scholar
  2. Baglioni, S., and Magnini, M., 1909, Azione di alcune sostanze chimiche sulle zone eccitabili della corteccia cerebrale del cane, Arch. Fisiol. 6:240–249.Google Scholar
  3. Barker, J. L., Crayton, J. W., and Nicoll, R. A., 1971, Noradrenaline and acetylcholine responses of supraoptic neurosecretory cells,J. Physiol. 218:19–32.PubMedGoogle Scholar
  4. Biscoe, T. J., and Krnjević, K., 1963, Chloralose and the activity of Renshaw cells, Exp. Neurol. 8:395–405.Google Scholar
  5. Biscoe, T. J., and Straughan, D. W., 1966, Micro-electrophoretic studies of neurones in the cat hippocampus, J. Physiol. 183:341–359.PubMedGoogle Scholar
  6. Bloom, F. E., Costa, E., and Salmoiraghi, G. C., 1964, Analysis of individual rabbit olfactory bulb neuron responses to the microelectrophoresis of acetylcholine, norepinephrine and serotonin synergists and antagonists,J. Pharmacol. 146:16–23.Google Scholar
  7. Bloom, F. E., Costa, E., and Salmoiraghi, G. C., 1965, Anesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microelectrophoresis,J. Pharmacol. Exp. Ther. 150:244–252.PubMedGoogle Scholar
  8. Bonichon, A., and Gerebtzoff, M. A., 1958, L’acétylcholinestérase dans la cellule et la fibre nerveuse au cours du développement. 2. Relation entre la localisation synaptique de l’enzyme et la myélinisation de la fibre, Ann. Histochim. 3:171–178.Google Scholar
  9. Bonnet, V., and Bremer, F., 1937, Action du potassium, du calcium et de l’acétylcholine sur les activités électriques, spontanées et provoquées, de l’écorce cérébrale, C. R. Soc. Biol. Paris 126:1271–1275.Google Scholar
  10. Borle, A. B., 1974, Cyclic AMP stimulation of calcium efflux from kidney, liver, and heart mitochondria,J. Membrane Biol., 16:207–220.Google Scholar
  11. Bornstein, M. B., 1946, Presence and action of acetylcholine in experimental brain trauma,J. Neurophysiol. 9:347–366.Google Scholar
  12. Bosmann, H. B., 1972, Acetylcholine receptor 1. Identification and biochemical characteristics of a cholinergic receptor of guinea pig cerebral cortex,J. Biol. Chem. 247:130–145.PubMedGoogle Scholar
  13. Bradley, P. B., and Dray, A., 1972, Short latency excitation of brain stem neurones in the rat by acetylcholine, Brit. J. Pharmacol. 45:372–374.Google Scholar
  14. Bradley, P. B., Dhawan, B. N., and Wolstencroft, J. H., 1966, Pharmacological properties of cholinoceptive neurones in the medulla and pons of the cat,J. Physiol. 183:658–673.PubMedGoogle Scholar
  15. Bremer, F., and Chatonnet, J., 1949, Acétylcholine et cortex cérébral, Arch. Int. Physiol. 57:106–109.PubMedGoogle Scholar
  16. Bülbring, E., and Burn, J. H., 1941, Observations bearing on synaptic transmission by acetylcholine in the spinal cord,J. Physiol. 100:337–368.PubMedGoogle Scholar
  17. Bülbring, E., and Tomita, T., 1969, Effect of calcium, barium and manganese on the action of adrenaline in the smooth muscle of the guinea-pig taenia coli, Proc. Roy. Soc. Lond. Ser. B 172:121–136.Google Scholar
  18. Catchlove, R. F. H., Krnjević, K., and Maretić, H., 1972, Similarity between effects of general anesthetics and dinitrophenol on cortical neurones, Can. J. Physiol. Pharmac. 50:1111–1114.Google Scholar
  19. Celesia, G. G., and Jasper, H. H., 1966, Acetylcholine released from cerebral cortex in relation to state of activation, Neurology (Minneap.) 16:1053–1064.Google Scholar
  20. Chang, H. T., 1953, Similarity in action between curare and strychnine on cortical neurons,J. Neurophysiol. 16:221–233.PubMedGoogle Scholar
  21. Chatfield, P. O., and Purpura, D. P., 1954, Augmentation of evoked cortical potentials by topical application of prostigmine and acetylcholine after atropinization of cortex, Electroenceph. Clin. Neurophysiol. 6:287–298.PubMedGoogle Scholar
  22. Crawford, J. M., 1970, The sensitivity of cortical neurones to acidic amino acids and acetylcholine, Brain Res. 17:287–296.PubMedGoogle Scholar
  23. Crawford, J. M., and Curtis, D. R., 1966, Pharmacological studies on feline Betz cells,J. Physiol. 186:121–138.PubMedGoogle Scholar
  24. Crawford, J. M., Curtis, D. R., Voorhoeve, P. E., and Wilson, V. J., 1966, Acetylcholine sensitivity of cerebellar neurones in the cat,J. Physiol. 186:139–165.PubMedGoogle Scholar
  25. Csillik, B., Tóth, L., and Karcsu, S., 1973, Acetylcholinesterase activity of Renshaw elements and Renshaw bulbs: A light- and electron-histochemical study,J. Neurocytol. 2:441–455.PubMedGoogle Scholar
  26. Curtis, D. R., and Eccles, R. M., 1958a, The excitation of Renshaw cells by pharmacological agents applied electrophoretically,J. Physiol. 141:435–445.PubMedGoogle Scholar
  27. Curtis, D. R., and Eccles, R. M., 1958b, The effect of diffusional barriers upon the pharmacology of cells within the central nervous system,J. Physiol. 141:446–463.PubMedGoogle Scholar
  28. Curtis, D. R., and Phillis, J. W., 1960, The action of procaine and atropine on spinal neurones,J. Physiol. 153:17–34.PubMedGoogle Scholar
  29. Curtis, D. R., and Ryall, R. W., 1966a, The excitation of Renshaw cells by cholinomimetics, Exp. Brain Res. 2:49–65.PubMedGoogle Scholar
  30. Curtis, D. R., and Ryall, R. W., 1966b, The acetylcholine receptors of Renshaw cells, Exp. Brain Res. 2:66–80.PubMedGoogle Scholar
  31. Curtis, D. R., Ryall, R. W., and Watkins, J. C., 1966, The action of cholinomimetics on spinal interneurones, Exp. Brain Res. 2:97–106.PubMedGoogle Scholar
  32. Dale, H. H., 1914, The action of certain esters and ethers of choline, and their relation to muscarine,J. Pharmacol. Exp. Ther. 6:147–190.Google Scholar
  33. Dale, H. H., 1935, Pharmacology and nerve-endings, Proc. Roy. Soc. Med. 28:319–332.PubMedGoogle Scholar
  34. Dale, H. H., 1938, Acetylcholine as a chemical transmitter of the effects of nerve impulses,J. ML Sinai Hosp. 4:401–429.Google Scholar
  35. Davis, R., and Vaughan, P. C., 1969, Physiological properties of feline red nucleus, Int. J. Neuropharmacol. 8:475–488.PubMedGoogle Scholar
  36. Del Castillo, J., and Katz, B., 1954, The membrane change produced by the neuromuscular transmitter,J. Physiol. 125:546–565.Google Scholar
  37. Dennis, M. J., and Gerschenfeld, H. M., 1969, Some physiological properties of identified mammalian neuroglial cells,J. Physiol. 203:211–222.PubMedGoogle Scholar
  38. De Robertis, E., 1971, Molecular biology of synaptic receptors, Science 171:963–971.PubMedGoogle Scholar
  39. Deutsch, J. A., 1973, The cholinergic synapse and the site of memory, in: The Physiological Basis of Memory (J. A. Deutsch, ed.), pp. 59–76, Academic Press, New York.Google Scholar
  40. Diamond, J., 1959, The effects of injecting acetylcholine into normal and regenerating nerves,J. Physiol. 145:611–629.PubMedGoogle Scholar
  41. Eccles, J. C., 1957, The Physiology of Nerve Cells, Johns Hopkins Press, Baltimore.Google Scholar
  42. Eccles, J. C., Fatt, P., and Koketsu, K., 1954, Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones,J. Physiol. 126:524–562.PubMedGoogle Scholar
  43. Eccles, J. C., Eccles, R. M., and Fatt, P., 1956, Pharmacological investigations on a central synapse operated by acetylcholine,J. Physiol. 131:154–169.PubMedGoogle Scholar
  44. Eccles, J. C., Eccles, R. M., Iggo, A., and Lundberg, A., 1961, Electrophysiological investigations on Renshaw cells,J. Physiol. 159:461–478.PubMedGoogle Scholar
  45. Eichhorn, J. H., Salzman, E. W., and Silen, W., 1974, Cyclic GMP response in vivo to cholinergic stimulation of gastric mucosa, Nature 248:238–239.PubMedGoogle Scholar
  46. Esplin, D. W., Čapek, R., and Esplín, B. A., 1972, Pharmacological studies on dorsal root responses produced by ventral root stimulation in the cat, Canad. J. Physiol. Pharmacol. 50:119–122.Google Scholar
  47. Farrow, J. T., and O’Brien, R. D., 1973, Binding of atropine and muscarone to rat brain fractions and its relation to the acetylcholine receptor, Mol. Pharmacol. 9:33–40.PubMedGoogle Scholar
  48. Fatt, P., and Katz, B., 1951, An analysis of the end-plate potential recorded with an intra-cellular electrode,J. Physiol. 115:320–370.PubMedGoogle Scholar
  49. Feldberg,W., Malcolm, J. L., and Sherwood, S. L., 1956, Some effects of tubocurarine on the electrical activity of the cat’s brain,J. Physiol 132:130–145.PubMedGoogle Scholar
  50. Feltz, A., and Mallart, A., 1971, Ionic permeability changes induced by some cholinergic agonists on normal and denervated frog muscles,J. Physiol. 218:101–116.PubMedGoogle Scholar
  51. Flock, A., and Russell, I., 1973, Efferent nerve fibres: Post synaptic action on hair cells, Nature New Biol. 243:89–91.PubMedGoogle Scholar
  52. Freeman, A. R., 1973, Electrophysiological analysis of the actions of strychnine, bicuculline and Picrotoxin on the axonal membrane.J. Neurobiol. 4:567–582.PubMedGoogle Scholar
  53. Funderburk, W. H., and Case, T. J., 1951, The effect of atropine on cortical potentials, Electroenceph. Clin. Neurophysiol. 3:213–223.PubMedGoogle Scholar
  54. Galindo, A., Krnjević, K., and Schwartz, S., 1968, Patterns of firing in cunéate neurones and some effects of Flaxedil, Exp. Brain Res. 5:87–101.PubMedGoogle Scholar
  55. Galley, N., Klinke, R., Oertel, W., Pause, M., and Storch, W.-H., 1973, The effect of intracochlearly administered acetylcholine-blocking agents on the efferent synapses of the cochlea, Brain Res. 64:55–63.PubMedGoogle Scholar
  56. George, W. J., Polson, J. B., O’Toole, A. G., and Goldberg, N. D., 1970, Elevation of guanosine 3′,5′-cyclic phosphate in rat heart after perfusion with acetylcholine, Proc. Natl. Acad. Sci., 66:398–403.PubMedGoogle Scholar
  57. Ginsborg, B. L., and Guerrero, S., 1964, On the action of depolarizing drugs on sympathetic ganglion cells of the frog,J. Physiol. 172:189–206.PubMedGoogle Scholar
  58. Godfraind, J. M., Kawamura, H., Krnjević, K., and Pumain, R., 1971, Actions of dinitrophenol and some other metabolic inhibitors on cortical neurones,J. Physiol. 215:199–222.PubMedGoogle Scholar
  59. Gray, J. A. B., and Diamond, J., 1957, Pharmacological properties of sensory receptors and their relation to those of the autonomic nervous system, Brit. Med. Bull. 13:185–188.PubMedGoogle Scholar
  60. Harris, A. J., and Dennis, M. J., 1970, Acetylcholine sensitivity and distribution on mouse neuroblastoma cells, Science 167:1253–1255.PubMedGoogle Scholar
  61. Hebb, C. O., 1957, Biochemical evidence for the neural function of acetylcholine, Physiol. Rev. 37:196–220.PubMedGoogle Scholar
  62. Henderson, W. R., and Wilson, W. C., 1936, Intraventricular injection of acetylcholine and eserine in man. Quart. J. Exp. Physiol. 26:83–95.Google Scholar
  63. Hiley, C. R., Young, J. M., and Burgen, A. S. V., 1972, Labelling of cholinergic receptors in subcellular fractions from rat cerebral cortex, Biochem. J. 127:86P.Google Scholar
  64. Hill, R. G., Simmonds, M. A., and Straughan, D. W., 1973, Amino acid antagonists and the depression of cuneate neurones by γ-aminobutyric acid (GABA) and glycine, Brit. J. Pharmacol. 47:642–643P.Google Scholar
  65. Hodgkin, A. L., 1964, The Conduction of the Nervous Impulse, University Press, Liverpool.Google Scholar
  66. Hokin, L. E., and Hokin, M. R., 1963, Phosphatide acid metabolism and active transport of sodium, Fed. Proc. 22:8–18.PubMedGoogle Scholar
  67. Jankowska, E., and Lindström, S., 1971, Morphological identification of Renshaw cells, Acta Physiol. Scand. 81:428–430.PubMedGoogle Scholar
  68. Jordan, L. M., and Phillis, J. W., 1972, Acetylcholine inhibition in the intact and chronically isolated cerebral cortex, Brit. J. Pharmacol. 45:584–595.Google Scholar
  69. Kataoka, K., Nakamura, Y., and Hassler, R., 1973, Habenulointerpeduncular tract: A possible cholinergic neuron in rat brain, Brain Res. 62:264–267.PubMedGoogle Scholar
  70. Katz, B., and Thesleff, S., 1957, A study of the “desensitization” produced by acetylcholine at the motor end-plate,J. Physiol. 138:63–80.PubMedGoogle Scholar
  71. Kelly, J. S., Krnjević, K., Morris, M. E., and Yim, G. K. W., 1969, Anionic permeability of cortical neurones, Exp. Brain Res. 7:11–31.PubMedGoogle Scholar
  72. Klee, M. R., Lux, H. D., and Offenloch, K., 1964, Veränderungen der Membranpolarisation und der Erregbarkeit von Zellen der motorischen Rinde während hochfrequenter Reizung der Formatio reticularis, Arch. Psychiat. Nervenkr. 205:237–261.Google Scholar
  73. Kobayashi, H., and Libet, B., 1970, Actions of noradrenaline and acetylcholine on sympathetic ganglion cells,J. Physiol. 208:353–372.PubMedGoogle Scholar
  74. Krebs, E. G., Stull, J. T., England, P. J., Huang, T. S., Brostrom, C. O., and Vandenheede, J. R., 1973, The regulation of muscle metabolism and function by protein phosphorylation, in: Protein Phosphorylation in Control Mechanisms (F. Huijing and E. Y. C. Lee, eds.), pp. 31–45, Academic Press, New York and London.Google Scholar
  75. Krnjević, K., 1965, Actions of drugs on single neurones in the cerebral cortex, Brit. Med. Bull. 21:10–14.PubMedGoogle Scholar
  76. Krnjević, K., 1967, Chemical transmission and cortical arousal, Anesthesiology 28:100–105.PubMedGoogle Scholar
  77. Krnjević, K., 1974a, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54:418–540.Google Scholar
  78. Krnjević, K., 1974b, Central actions of general anaesthetics, in: Molecular Mechanisms in General Anaesthesia, (Halsey, M. J., Millar, R. A., and Sutton, J. A., eds.) Churchill Livingston, New York., pp. 65–89.Google Scholar
  79. Krnjević, K., and Lisiewicz, A., 1972, Injections of calcium ions into spinal motoneurones,J. Physiol. 225:363–390.PubMedGoogle Scholar
  80. Krnjević, K., and Phillis, J. W., 1963a, Acetylcholine-sensitive cells in the cerebral cortex,J. Physiol. 166:296–327.PubMedGoogle Scholar
  81. Krnjević, K., and Phillis, J. W., 1963b, Pharmacological properties of acetylcholine-sensitive cells in the cerebral cortex,J. Physiol. 166:328–350.PubMedGoogle Scholar
  82. Krnjević, K., and Phillis, J. W., 1963c, Iontophoretic studies of neurones in the mammalian cerebral cortex,J. Physiol. 165:274–304.PubMedGoogle Scholar
  83. Krnjević, K., and Schwartz, S., 1967, Some properties of unresponsive cells in the cerebral cortex, Exp. Brain Res. 3:306–319.PubMedGoogle Scholar
  84. Krnjević, K., and Silver, A., 1965, A histochemical study of cholinergic fibres in the cerebral cortex.J. Anat. 99:711–759.PubMedGoogle Scholar
  85. Krnjević, K., and Silver, A., 1966, Acetylcholinesterase in the developing forebrain,J. Anat. 100:63–89.PubMedGoogle Scholar
  86. Krnjević, K., Pumain, R., and Renaud, L., 1971a, The mechanism of excitation by acetylcholine in the cerebral cortex,J. Physiol. 215:247–268.PubMedGoogle Scholar
  87. Krnjević, K., Pumain, R., and Renaud, L., 1971b, Effects of Ba2+ and tetraethylammonium on cortical neurones,J. Physiol. 215:223–245.PubMedGoogle Scholar
  88. Kuno, M., and Rudomin, P., 1966, The release of acetylcholine from the spinal cord of the cat by antidromic stimulation of motor nerves,J. Physiol. 187:177–193.PubMedGoogle Scholar
  89. Lake, N., 1973, Studies on the habenulo-interpeduncular pathway in cats, Exp. Neurol. 41:113–132.PubMedGoogle Scholar
  90. Larrabee, M. G., and Leicht, W.S., 1965, Metabolism of phosphatidyl inositol and other lipids in active neurones of sympathetic ganglia and other peripheral nervous tissues: The site of the inositide effect,J. Neurochem. 12:1–13.PubMedGoogle Scholar
  91. Lee, T.-P., Kuo, J. F., and Greengard, P., 1972, Role of muscarinic cholinergic receptors in regulation of guanosine 3′:5′-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle, Proc. Natl. Acad. Sci. 69:3287–3291.PubMedGoogle Scholar
  92. Legge, K., Randić, M., and Straughan, D. W., 1966, The pharmacology of neurones in the pyriform cortex, Brit. J. Pharmacol. 26:87–107.PubMedGoogle Scholar
  93. Loewi, O., 1921, Über humorale Übertragbarkeit der Herznervenwirkung. I. Mitteilung, Pfluegers Arch Ges. Physiol. 189:239–242.Google Scholar
  94. Magoun, H. W., 1963, The Waking Brain 2nd ed., Thomas, Springfield, Ill.Google Scholar
  95. McCance, I., 1972, The role of acetylcholine in the intracerebellar nuclei of the cat, Brain Res. 4:265–279.Google Scholar
  96. McCance, I., and Phillis, J. W., 1968, Cholinergic mechanisms in the cerebellar cortex, Int. J. Neuropharmacol 7:447–462.PubMedGoogle Scholar
  97. McLennan, H., and York, D. H., 1966, Cholinergic mechanisms in the caudate nucleus,J. Physiol. 187:163–175.PubMedGoogle Scholar
  98. Miller, F. R., Stavraky, G. W., and Woonton, G. A., 1940, Effects of eserine, acetylcholine and atropine on the electrocorticogram,J. Neurophysiol. 3:131–138.Google Scholar
  99. Montplaisir, J. Y., and Sazie, E., 1973, Effects of eserine and scopolamine on neuronal after-discharges of the auditory cortex, Electroenceph. Clin. Neurophysiol. 35:311–321.PubMedGoogle Scholar
  100. Moruzzi, G., 1939, Contribution à l’électrophysiologie du cortex moteur: Facilitation, afterdischarge et épilepsie corticales, Arch. Int. Physiol. 49:33–100.Google Scholar
  101. Nelson, P. G., and Frank, K., 1967, Anomalous rectification in cat spinal motoneurons and effect of polarizing currents on excitatory postsynaptic potential,J. Neurophysiol. 30:1097–1113.PubMedGoogle Scholar
  102. Nelson, P. G., and Peacock, J. H., 1972, Acetylcholine responses in L cells, Science 177:1005–1007.PubMedGoogle Scholar
  103. Nelson, P. G., Peacock, J. H., and Amano, T., 1971, Responses of neuroblastoma cells to iontophoretically applied acetylcholine,J. Cell Physiol. 77:353–362.PubMedGoogle Scholar
  104. Patrick, J., Heinemann, S. F., Lindstrom, J., Schubert, D., and Steinbach, J. H., 1972, Appearance of acetylcholine receptors during differentiation of a myogenic cell line, Proc. Natl. Acad. Sci. 69:2762–2766.PubMedGoogle Scholar
  105. Peacock, J. H., and Nelson, P. G., 1973, Chemosensitivity of mouse neuroblastoma cells in vitro, J. Neurohiol. 4:363–374.Google Scholar
  106. Pepeu, G., 1973, The release of acetylcholine from the brain: An approach to the study of the central cholinergic mechanisms, Prog. Neurobiol. 2:259–288.PubMedGoogle Scholar
  107. Phillis, J. W., 1971, The pharmacology of thalamic and geniculate neurons, Int. Rev. Neurobiol. 14:1–48.PubMedGoogle Scholar
  108. Phillis, J. W., and York, D. H., 1968, Pharmacological studies on a cholinergic inhibition in the cerebral cortex, Brain Res. 10:297–306.PubMedGoogle Scholar
  109. Phillis, J. W., Tebëcis, A. K., and York, D. H., 1967, A study of cholinoceptive cells in the lateral geniculate nucleus,J. Physiol. 192:695–713.PubMedGoogle Scholar
  110. Purpura, D. P., and Grundfest, H., 1957, Physiological and pharmacological consequences of different synaptic organizations in cerebral and cerebellar cortex of cat,J. Neurophysiol. 20:494–522.PubMedGoogle Scholar
  111. Randić, M., Siminoff, R., and Straughan, D. W., 1964, Acetylcholine depression of cortical neurones, Exp. Neurol. 9:236–242.PubMedGoogle Scholar
  112. Rang, H. P. (ed.), 1973, Drug Receptors, University Park Press, Baltimore and London.Google Scholar
  113. Ransom, B. R., and Goldring, S., 1973, Ionic determinants of membrane potential of cells presumed to be glia in cerebral cortex of cat.J. Neurophysiol. 36:855–868.PubMedGoogle Scholar
  114. Renshaw, B., 1941, Influence of discharge of motoneurons upon excitation of neighboring motoneurons,J. Neurophysiol. 4:167–183.Google Scholar
  115. Rinaldi, F., and Himwich, H. E., 1955, Cholinergic mechanism involved in function of mesodiencephalic activating system, Arch. Neurol Psychiat. 73:396–402.Google Scholar
  116. Ryall, R. W., Piercey, M. F., Polosa, C., and Goldfarb, J., 1972, Excitation of Renshaw cells in relation to orthodromic and antidromic excitation of motoneurons,J. Neurophysiol. 35:137–148.PubMedGoogle Scholar
  117. Salmoiraghi, G. C., and Stefanis, C. N., 1967, A critique of iontophoretic studies of central nervous system neurons, Int. Rev. Neurobiol. 10:1–30.PubMedGoogle Scholar
  118. Salmoiraghi, G. C., and Steiner, F. A., 1963, Acetylcholine sensitivity of cat’s medullary neurons,J. Neurophysiol. 26:581–597.PubMedGoogle Scholar
  119. Salvaterra, P. M., and Moore, W. J., 1973, Binding of [125I]bungarotoxin to particulate fractions of rat and guinea pig brain, Biochem. Biophys. Res. Commun. 55:1311–1318.PubMedGoogle Scholar
  120. Schweitzer, A., and Wright, S., 1937, The action of eserine and related compounds and acetylcholine on the central nervous system,J. Physiol. 89:165–197.PubMedGoogle Scholar
  121. Shute, C. C. D., and Lewis, P. R., 1966, Cholinergic and monoaminergic pathways in the hypothalamus, Brit. Med. Bull. 22:221–226.PubMedGoogle Scholar
  122. Silver, A., 1971, The significance of Cholinesterase in the developing nervous system, Prog. Brain Res. 34:345–355.Google Scholar
  123. Sokoloff, L., 1959, The action of drugs on the cerebral circulation, Pharmacol. Rev. 11:1–85.PubMedGoogle Scholar
  124. Spehlmann, R., 1963, Acetylcholine and prostigmine electrophoresis at visual cortical neurons,J. Neurophysiol. 26:127–139.PubMedGoogle Scholar
  125. Spehlmann, R., 1971, Acetylcholine and the synaptic transmission of non-specific impulses to the visual cortex, Brain 94:139–150.PubMedGoogle Scholar
  126. Stedman, E., and Stedman, E., 1939, The mechanism of the biological synthesis of acetylcholine, Biochem, J. 33:811–821.Google Scholar
  127. Steriade, M., and Deschênes, M., 1973, Cortical interneurons during sleep and waking in freely moving primates, Brain Res. 50:192–199.PubMedGoogle Scholar
  128. Stone, T. W., 1972, Cholinergic mechanisms in the rat somatosensory cerebral cortex,J. Physiol. 225:485–499.PubMedGoogle Scholar
  129. Straschill, M., and Perwein, J., 1971, Effect of iontophoretically applied biogenic amines and of cholinomimetic substances upon the activity of neurons in the superior colliculus and mesencephalic reticular formation of the cat, Pftuegers Arch., 324:43–55.Google Scholar
  130. Szerb, J. C., 1967, Cortical acetylcholine release and electroencephalographicarousal,J. Physiol. 192:329–343.PubMedGoogle Scholar
  131. Takeuchi, A., and Takeuchi, N., 1960, On the permeability of end-plate membrane during the action of transmitter,J. Physiol. 154:52–67.PubMedGoogle Scholar
  132. Tanaka, Y., and Katsuki, Y., 1966, Pharmacological investigations of cochlear responses and of olivo-cochlear inhibition,J. Neurophysiol. 29:94–108.PubMedGoogle Scholar
  133. Tebēcis, A. K., 1970, Properties of cholinoceptive neurones in the medial geniculate nucleus, Br. J. Pharmac. 38:117–137.Google Scholar
  134. TebĒcis, A. K., 1973, Transmitters and reticulospinal neurons, Exp. Neurol. 40:297–308.PubMedGoogle Scholar
  135. Tebecis, A. K., 1972, Cholinergic and non-cholinergic transmission in the medial geniculate nucleus of the cat,J. Physiol 226:153–172.PubMedGoogle Scholar
  136. Trautwein, W., and Dudel, J., 1958, Zum Mechanismus der Membranwirkung des Acetylcholin an der Herzmuskelfaser, Pfluegers Arch. 266:324–334.Google Scholar
  137. Ueki, S., Koketsu, K., and Domino, E. F., 1961, Effects of mecamylamine on the Golgi recurrent collateral-Renshaw cell synapse in the spinal cord, Exp. Neurol. 3:141–148.Google Scholar
  138. Vazquez, A. J., Krip, G., and Pinsky, C., 1969, Evidence for a muscarinic inhibitory mechanism n the cerebral cortex, Exp. Neurol. 23:318–331.PubMedGoogle Scholar
  139. Weight, F. F., and Padjen, A., 1973, Acetylcholine and slow synaptic inhibition in frog ympathetic ganglion cells, Brain Res. 55:225–228.PubMedGoogle Scholar
  140. Weight, F. F., and Salmoiraghi, G. C. 1966, Responses of spinal cord inter neurons to acetylcholine, norepinephrine and serotonin administered by microelectrophoresis,J. Pharmacol. Exp. Ther. 153:420–427.PubMedGoogle Scholar
  141. Willis, W. D., 1971, The case for the Renshaw cell Brain Behav. Evol. 4:5–52.PubMedGoogle Scholar
  142. Woody, C. D., 1974, Aspects of the electrophysiology of cortical processes related to the development and performance of learned motor responses, Physiologist 17:49–69.PubMedGoogle Scholar
  143. Woody, C. D., Carpenter, D., Knispel, J. D., Crow, T., and Black-Cleworth, P., 1974, Prolonged increase in resistance of neurons in cat motor cortex following extracellular iontophoretic application of acetylcholine (ACh) and intracellular current injection, Fed. Proc. 33:399.Google Scholar
  144. Yamamoto, C., and Kawai, N., 1967, Presynaptic action of acetylcholine in thin sections from the guinea pig dentate gyrus in vitro, Exp. Neurol. 19:176–187.PubMedGoogle Scholar
  145. Yamamura, H. I., Kuhar, M. J., and Snyder, S. H., 1974, Muscarinic cholinergic receptor binding in mammalian central and peripheral nervous system: Demonstration in vitro and in vivo, Trans. Am. Soc. Neurochem. 5:72.Google Scholar
  146. Zieglgänsberger, W., and Puil, E. A., 1973, Intracellular investigations on the effect of microelectrophoretically applied glutamate antagonists upon spinal neurones of the cat, Naunyn-Schmiedebergs Arch. Pharmacol. Suppl. 277:R89.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • K. Krnjević
    • 1
  1. 1.Department of Research in AnaesthesiaMcGill UniversityMontrealCanada

Personalised recommendations