Amine Receptors in CNS. II. Dopamine

  • Donald H. York
Part of the Handbook of Psychopharmacology book series (HBKPS, volume 6)


The localization of dopamine within the central nervous system of mammals has suggested structures where dopamine released from the terminals of dopaminergic nerves may function as a neurotransmitter and, according to classical theories of neurotransmission, exert an effect on a specific dopamine receptor, causing permeability changes in the postsynaptic neuron indicative of either excitation or inhibition. This chapter will attempt to provide evidence for these postulates, based on accepted neurotransmitter criteria (McLennan, 1970; Werman, 1966).


Substantia Nigra Dopamine Receptor Caudate Nucleus Median Eminence Luteinizing Hormone Release Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adey, R., 1959, The sense of smell, in: Handbook of Physiology, Vol. 1 (J. Field, H. W. Magoun and V. E. Hall, eds.), Sect. 1, American Physiological Society, Washington, D.C.Google Scholar
  2. Aghajanian, G. K., and Bunney, B. S., 1973, Central dopaminergic neurons: Neurophysiological identification and responses to drugs, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), Pergamon Press, New York.Google Scholar
  3. Agid, Y., Javoy, F., and Glowinski, J., 1973, Hyperactivity of remaining dopaminergic neurones after partial destruction of the nigro-striatal dopaminergic system in the rat, Nature New Biol. 245:150–151.PubMedCrossRefGoogle Scholar
  4. Ahrén, K., Fuxe, K., Hamberger, L., and Hökfelt, T., 1971, Turnover changes in the tubero-infundibular dopamine neurons during the ovarian cycle of the rat, Endocrinology 88:1415–1424.PubMedCrossRefGoogle Scholar
  5. Albe-Fessard, D., Raieva, S., and Santiago, W., 1967, Sur les relations entre la substance noire et le noyau caude, J. Physiol. (Paris) 59:324–325.Google Scholar
  6. Ames, A., and Pollen, D. A., 1969, Neurotransmission in central nervous tissue—A study of isolated rabbit retina, J. Neurophysiol. 32:424.PubMedGoogle Scholar
  7. Amsler, C., 1923, Beitrage zur Pharmakologie des Gehirns, Arch. Exp. Pathol. Pharmakol. 97:1–14.CrossRefGoogle Scholar
  8. Andén, N. E., Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N. Å., and Larsson, K., 1964, Demonstration and mapping out of nigro-neostriatal dopamine neurons, Life Sci. 3:523–530.PubMedCrossRefGoogle Scholar
  9. Andén, N. E., Dahlström, A., Fuxe, K., and Larsson, K., 1965, Further evidence for the presence of nigro-neostriatal dopamine neurons in the rat, Am. J. Anat. 116:329–334.PubMedCrossRefGoogle Scholar
  10. Andén, N. E., Dahlström, A., Fuxe, K., Larsson, K., Olsson, L., and Ungerstedt, U., 1966, Ascending monoamine neurons to the telecephalon and diencephalon, Acta Physiol. Scand. 67:313–326.CrossRefGoogle Scholar
  11. Andén, N. E., Rubenson, A., Fuxe, K., and Hökfelt, T., 1967, Evidence for dopamine receptor stimulation by apomorphine, J. Pharm. Pharmacol. 19:627–629.PubMedCrossRefGoogle Scholar
  12. Andén, N. E., Butcher, S. G., Corrodi, H., Fuxe, K., and Ungerstedt, U., 1970, Receptor activity and turnover of dopamine and noradrenaline after neuroleptics, Eur. J. Pharmacol. 11:303–314.PubMedCrossRefGoogle Scholar
  13. Andén, N. E., Corrodi, H., Fuxe, K., and Ungerstedt, U., 1971, Importance of nervous impulse flow for the neuroleptic induced increase in amine turnover in central dopamine neurons, Eur. J. Pharmacol. 15:193–199.PubMedCrossRefGoogle Scholar
  14. Arbuthnott, G. W., and Crow, T. J., 1971, Relation of contraversive turning to unilateral release of dopamine from the nigrostriatal pathway in rats, Exp. Neurol. 30:484–491.PubMedCrossRefGoogle Scholar
  15. Arbuthnott, G. W., Crow, T. J., Fuxe, K., Olsson, L., and Ungerstedt, U., 1970, Depletion of catecholamines in vivo induced by electrical stimulation of central monoamine pathways, Brain Res. 24:471–483.PubMedCrossRefGoogle Scholar
  16. Ariëns, E. J., 1967, The structure-activity relationships of beta adrenergic drugs and beta adrenergic blocking agents, Ann. N.Y. Acad. Sci. 139:606–631.PubMedCrossRefGoogle Scholar
  17. Asper, H., Baggiolini, M., Burki, H. R., Lauener, H., Ruch, W., and Stille, G., 1973, Tolerance phenomena with neuroleptics: Catalepsy, apomorphine stereotypies and striatal dopamine metabolism in the rat after single and repeated administration of loxapine and haloperidol, Eur. J. Pharmacol. 22:287–294.PubMedCrossRefGoogle Scholar
  18. Barbeau, A., 1972, Role of dopamine in the nervous system, Monogr. Hum. Genet. 6:114–136.PubMedGoogle Scholar
  19. Barnett, S. A., 1963, The Rat: A Study in Behavior, pp. 34–80, Aldine, Chicago.Google Scholar
  20. Barraclough, C. A., and Sawyer, C. H., 1957, Blockade of the release of pituitary ovulating hormone in the rat by chlorpromazine and reserpine: Possible mechanism of action, Endocrinology 61:341–351.PubMedCrossRefGoogle Scholar
  21. Bergin, R., and Carlstrom, D., 1968, Structure of catecholamines. 2. Crystal structure of dopamine hydrochloride, Acta Crystallog. B24:1506–1568.Google Scholar
  22. Bertler, A., 1961, Occurrence and localization of catecholamines in the human brain, Acta Physiol. Scand. 51:97.CrossRefGoogle Scholar
  23. Bertler, A., and Rosengren, E., 1959, Occurrence and distribution of catecholamines in brain, Acta Physiol. Scand. 47:350–361.PubMedGoogle Scholar
  24. Bertler, Å., Falck, B., Gottfries, C. G., Ljunggren, L., and Rosengren, E., 1964, Some observations on adrenergic connections between mesencephalon and cerebral hemispheres, Acta Pharmacol. Toxicol. 21:283–289.CrossRefGoogle Scholar
  25. Besson, M. J., Cheramy, A., and Glowinski, J., 1969, Effects of amphetamine and desmethyl-imipramine on amines synthesis and release in the central catecholamine containing neurons, Eur. J. Pharmacol. 7:111.PubMedCrossRefGoogle Scholar
  26. Besson, M., Cheramy, A., Feltz, P., and Glowinski, J., 1971, Dopamine: Spontaneous and drug-induced release from the caudate nucleus in the cat, Brain Res. 32:407–424.PubMedCrossRefGoogle Scholar
  27. Bloom, F. E., Costa, E., and Salmoiraghi, G. C., 1965, Anaesthesia and the responsiveness of individual neurones of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microelectrophoresis, J. Pharmacol. Exp. Ther. 150:244–252.PubMedGoogle Scholar
  28. Boakes, R. J., Bradley, P. B., and Candy, J. M., 1972, A neuronal basis for the alerting action of (+)-amphetamine, Brit. J. Pharmacol. 45:391–403.CrossRefGoogle Scholar
  29. Boden, G., Lundy, L. E., and Owen, O. E., 1972, Influence of levodopa on serum levels of anterior pituitary hormones in man, Neuroendocrinology 10:309–315.PubMedCrossRefGoogle Scholar
  30. Boyd, A. E., Lebovitz, H. E., and Pfeiffer, J. B., 1970, Stimulation of human growth hormone secretion by L-dopa, New Engl. J. Med. 283:1425–1429.PubMedCrossRefGoogle Scholar
  31. Bradley, P. B., 1968, Synaptic transmission in the central nervous system and its relevance for drug action, Int. Rev. Neurobiol. 11:1–56.PubMedCrossRefGoogle Scholar
  32. Bradley, P. B., and Elkes, J., 1953, The effect of amphetamine and D-lysergic acid diethyl-amide (LSD) on the electrical activity of the conscious cat, J. Physiol. 120:13–14P.Google Scholar
  33. Bradley, P. B., and Elkes, J., 1957, The effects of some drugs on the electrical activity of the brain, Brain, 80:77–117.PubMedCrossRefGoogle Scholar
  34. Breese, G. R., and Taylor, T. D., 1970, Effect of 6-hydroxydopamine on brain norepinephrine and dopamine: Evidence for selective degeneration of catecholamine neurons, J. Pharmacol. Exp. Ther. 174:413–420.PubMedGoogle Scholar
  35. Broch, O. J., and Marsden, C. A., 1972, Regional distribution of monoamines in the corpus striatum of the rat, Brain Res. 38:425–428.PubMedCrossRefGoogle Scholar
  36. Brown, J. H., and Makman, M. H., 1972, Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3’:5’-cyclic monophosphate formation in intact retina, Proc. Natl. Acad. Sci. 69:539–543.PubMedCrossRefGoogle Scholar
  37. Buchwald, N. Å., and Ervin, F. R., 1957, Evoked potentials and behavior: A study of responses to subcortical stimulation in the awake, unrestrained animal, Electroenceph. Clin. Neurophysiol. 13:531–537.CrossRefGoogle Scholar
  38. Buchwald, N. Å., Hull, C. D., Vernon, L. M., and Bernardi, G. A., 1969, Physiological and psychological aspects of basal ganglia functions, in: Psychotropic Drugs and Dysfunctions of the Basal Ganglia (G. Crane and R. Gardner Jr., eds.), pp. 82–91, Public Health Service Publ. No. 1938, Government Printing Office, Washington, D.C.Google Scholar
  39. Buchwald, N. Å., Price, D. D., Vernon, L., and Hull, C. D., 1973, Caudate intracellular response to thalamic and cortical inputs, Exp. Neurol. 38:311–323.PubMedCrossRefGoogle Scholar
  40. Bunney, B. S., Walters, J. R., Roth, R. H., and Aghajanian, G. K., 1973, Dopaminergic neurons: Effect of antipsychotic drugs and amphetamine on single cell activity, J. Pharmacol. Exp. Ther. 185:560–571.PubMedGoogle Scholar
  41. Bustard, T., and Egan, R., 1971, Conformation of dopamine hydrochloride, Tetrahedron 27:4457–4471.CrossRefGoogle Scholar
  42. Carlsson, A., 1959, The occurrence, distribution and physiological role of catechol amines in the nervous system, Pharmacol. Rev. 11:490–493.PubMedGoogle Scholar
  43. Carlsson, A., 1960, in: Ciba Foundation Symposium on Adrenergic Mechanisms (J. R. Vane, G. E. W. Wolstenholme, and M. O’Connor, Eds.), pp. 558–559, Churchill, London.Google Scholar
  44. Carlsson, A., 1964, Functional significance of drug-induced changes in brain monoamine levels, in Prog. Brain Res. 8:9.CrossRefGoogle Scholar
  45. Carlsson, A., 1972, Biochemical and pharmacological aspects of parkinsonism, Acta Neurol. Scand. Suppl. 51:11–42.PubMedGoogle Scholar
  46. Carlsson, A., and Hillarp, N. Å., 1962, Formation of phenolic acids in brain after administration of 3,4-dihydroxyphenylalanine, Acta Physiol. Scand. 55:95–100.PubMedCrossRefGoogle Scholar
  47. Carlsson, A., and Lindqvist, M., 1963, Effect of chlorpromazine and haloperidol on formation of 3-methoxytyramine and normethanephrine in mouse brain, Acta Pharmacol. Toxicol. 20:140–144.CrossRefGoogle Scholar
  48. Carlsson, A., Lindqvist, M., Magnusson, T., and Waldeck, B., 1958, On the presence of 3-hydroxytyramine in the brain, Science 127:471.PubMedCrossRefGoogle Scholar
  49. Carlsson, A., Falck, B., and Hillarp, N. Å., 1962, Cellular localization of brain monoamines, Acta Physiol. Scand. 56: Suppl. 196.Google Scholar
  50. Carlsson, A., Fuxe, K., Hamberger, B., and Lindqvist, M., 1966, Biochemical and histochemical studies on the effects of imipramine-like drugs and (+)-amphetamine on central and peripheral catecholamine neurons, Acta Physiol. Scand. 67:481–497.PubMedCrossRefGoogle Scholar
  51. Chiueh, C. C., and Moore, K. E., 1973, Release of endogenously synthesized catechols from the caudate nucleus by stimulation of the nigro-striatal pathway and by the administration of d-amphetamine, Brain Res. 50:221–225.PubMedCrossRefGoogle Scholar
  52. Christie, J. E., and Crow, T. J., 1971, Turning behaviour as an index of the action of amphetamines and ephedrines on central dopamine-containing neurones, Brit. J. Pharmacol. 43:658–667.CrossRefGoogle Scholar
  53. Cohen, D. H., and Pitts, L. D., 1967, The hyperstriatal region of the avian forebrain: Somatic and autonomic responses to electrical stimulation, J. Comp. Neurol. 131:323–336.CrossRefGoogle Scholar
  54. Collu, R., Visconti, F. P., and Martini, L., 1972, Adrenergic and serotoninergic control of growth hormone secretion in adult male rats, Endocrinology 90:1231–1236.PubMedCrossRefGoogle Scholar
  55. Connor, J. D., 1970, Caudate nucleus neurones: Correlation of the effects of substantia nigra stimulation with iontophoretic dopamine, J. Physiol. 208:691–703.PubMedGoogle Scholar
  56. Connor, J. D., and Neff, N. H., 1970, Dopamine concentrations in the caudate nucleus of the developing cat, Life Sci. 9:1165–1168.CrossRefGoogle Scholar
  57. Cools, A. R., and van Rossum, M. J., 1970, Caudal dopamine and stereotype behaviour of cats, Arch. Int. Pharmacodyn. 187:163–173.PubMedGoogle Scholar
  58. Coppola, J. A., Leonardi, R. G., and Lippmann, W., 1966, Ovulatory failure in rats after treatment with brain norepinephrine depletors, Endocrinology 78:225–228.PubMedCrossRefGoogle Scholar
  59. Corrodi, H., Fuxe, K., and Hökfelt, T., 1967, The effect of neuroleptics on the activity of central catecholamine neurons, Life Sci. 6:767.PubMedCrossRefGoogle Scholar
  60. Costall, B., Naylor, R. J., and Olley, J. E., 1972, The substantia nigra and stereotyped behaviour, Eur. J. Pharmacol. 18:95–106.PubMedCrossRefGoogle Scholar
  61. Coyle, J. T., and Snyder, S. H., 1969, Antiparkinsonian drugs: Inhibition of dopamine uptake in the corpus striatum as a possible mechanism of action, Science 166:899.PubMedCrossRefGoogle Scholar
  62. Coyle, J. T., Jacobwitz, D., Klein, D., and Axelrod, J., 1973, Dopaminergic neurons in explants of substantia nigra in culture, J. Neurobiol. 4:461–470.PubMedCrossRefGoogle Scholar
  63. Crow, T. J., 1971, The relationship between lesion site, dopamine neurons, and turning behavior in the rat, Exp. Neurol. 32:247–255.PubMedCrossRefGoogle Scholar
  64. Crow, T. J., and Gillbe, C., 1970, Methamphetamine-protriptyline interaction in rotating rats, Brit. J. Pharmacol. 38:458P.Google Scholar
  65. Curtis, D. R., 1964, Microelectrophoresis, in: Physical Techniques in Biological Research, Vol. (W. L. Nastuk, ed.), Part A: Electrophysiological Methods, pp. 144–190, Academic Press, London.Google Scholar
  66. Dahlström, A., and Fuxe, K., 1964, Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons, Acta Physiol. Scand. 62: Suppl. 232.Google Scholar
  67. daPrada, M., and Pletscher, A., 1966a, Acceleration of the cerebral dopamine turnover by chlorpromazine, Experientia 22:1–5.CrossRefGoogle Scholar
  68. daPrada, M., and Pletscher, A., 1966b, On the mechanism of chlorpromazine-induced changes of cerebral homovanillic acid levels, J. Pharm. Pharmacol. 18:628–630.CrossRefGoogle Scholar
  69. Delmas-Marsalet, V. A. P., 1925, Contribution expérimentale à l’étude des fonctions du noyau caudé. Thèse de l’Université de Bordeau, 24/7/1925.Google Scholar
  70. Dill, R. E., Nickey, W. M., and Little, M. D., 1968, Dyskinesias in rats following chemical stimulation of the neostriatum, Tex. Rep. Biol. Med. 26:101–106.PubMedGoogle Scholar
  71. Donoso, A. O., Stefano, F.J. E., Biscardi, A. M., and Cukier, J., 1967, Effects of castration on hypothalamic catetholamines, Am. J. Physiol. 212:737–739.PubMedGoogle Scholar
  72. Donoso, A. O., Bishop, W., and Fawcett, C. P., 1971, Effects of drugs that modify brain monoamine concentrations on plasma gonadotrophin and prolactin levels in the rat, Endocrinology 89:774–784.PubMedCrossRefGoogle Scholar
  73. Ehinger, B., 1966, Distribution of adrenergic nerves in the eye and some related structures in the cat, Acta Physiol. Scand. 66:123.PubMedCrossRefGoogle Scholar
  74. Ehinger, B., and Falck, B., 1969, Morphological and pharmacohistochemical characteristics of adrenergic retinal neurons of some mammals, Graefe. Arch. Klin. Exp. Ophthalmol. 178:295.CrossRefGoogle Scholar
  75. Ehinger, B., Falck, B., and Laties, A. M., 1969, Adrenergic neurons in teleost retina, Z. Zellforsch. 97:285.PubMedCrossRefGoogle Scholar
  76. Ehringer, H., and Hornykiewicz, O., 1960, Verteilung von Noradrenalin und Dopamin (3-hydroxytyramin) in Gehirn des menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems, Klin. Wschr. 38:1236–1239.PubMedCrossRefGoogle Scholar
  77. Ernst, A. M., 1965, Relation between the action of dopamine and apomorphine and their -O-methylated derivatives upon the CNS, Psychopharmacologia 7:391–399.PubMedCrossRefGoogle Scholar
  78. Ernst, A. M., 1969, The role of biogenic amines in the extrapyramidal system, Acta Physiol. Pharmacol. Neerl. 15:141–154.PubMedGoogle Scholar
  79. Ernst, A. M., and Smelik, P. G., 1966, Site of action of dopamine and apomorphine in compulsive gnawing behaviour in rats, Experientia 22:837–838.PubMedCrossRefGoogle Scholar
  80. Everett, J. W., 1964, Central neural control of reproductive functions of the adenohypophysis, Physiol. Rev. 44:373.PubMedGoogle Scholar
  81. Fekete, M., and Kurti, A. M., 1970, On the dopaminergic nature of the gnawing compulsion induced by apomorphine in mice, J. Pharm. Pharmacol. 22:377–379.PubMedCrossRefGoogle Scholar
  82. Feltz, P., 1970, Nigrostriate pathway: Attempts to differentiate excitation and inhibition by micro-iontophoresis of dopamine, J. Physiol. (Paris) 62: Suppl. 151.Google Scholar
  83. Feltz, P., and Albe-Fessard, D., 1972, A study of an ascending nigro-caudate pathway, Electroenceph, Clin. Neurophysiol. 33:179–193.CrossRefGoogle Scholar
  84. Feltz, P., and DeChamplain, J., 1972a, Persistence of caudate unitary responses to nigral stimulation after destruction and functional impairment of the striatal dopaminergic terminals, Brain Res. 43:595–600.PubMedCrossRefGoogle Scholar
  85. Feltz, P., and DeChamplain, J., 1972b, Enhanced sensitivity of caudate neurones to microiontophoretic injections of dopamine in 6-hydroxydopamine treated cats, Brain Res. 43:601–605.PubMedCrossRefGoogle Scholar
  86. Feltz, P., and DeChamplain, J., 1973, The postsynaptic effect of amphetamine on striatal dopamine-sensitive neurones, in: Frontiers in Catecholamine Research (E. Usdin, and S. Snyder eds.), Pergamon Press, New York.Google Scholar
  87. Ferrier, D., 1873, Pathological illustrations of brain function, West Riding Lunatic Asylum Med. Rep. 3:30.Google Scholar
  88. Fibiger, H. C., Pudritz, R. E., McGeer, E. G., and McGeer, P. L., 1972, Axonal transport in nigro-striatal and nigro-thalamic neurons: Effects of medial forbrain bundle lesions and 6-hydroxydopamine,J. Neurochem. 19:1697–1710.PubMedCrossRefGoogle Scholar
  89. Fibiger, H. C., Fibiger, H. P., and Zis, A. P., 1973a, Attenuation of amphetamine-induced motor stimulation and stereotypy by 6-hydroxydopamine in the rat, Brit. J. Pharmacol. 47:683–692.CrossRefGoogle Scholar
  90. Fibiger, H. C., McGeer, E. G., and Atmadja, S., 1973b, Axoplasmic transport of dopamine in nigro-striatal neurons, J. Neurochem. 21:373–385.PubMedCrossRefGoogle Scholar
  91. Fog, R. L., Randrup, A., and Pakkenberg, H., 1967, Aminergic mechanisms in corpus striatum and amphetamine-induced stereotyped behavioue, Psychopharmacologia 11:179–183.PubMedCrossRefGoogle Scholar
  92. Fog, R. L., Randrup, A., and Pakkenberg, H., 1968, Amines in the corpus striatum associated with the effects of both amphetamine and antipsychotic drugs, in: Proceedings of the IVth World Congress of Psychiatry, Madrid, 1966 (J. J. Lopez Ibor, ed.), pp. 2580–2582, Excerpta Medica International Congress Series No. 150, Amsterdam.Google Scholar
  93. Forman, D., and Ward, J. W., 1957, Response to electrical stimulation of caudate nucleus in cats in chronic experiments, J. Neurophysiol. 20:230–244.PubMedGoogle Scholar
  94. Frigyesi, T. L., and Purpura, D., 1966, Electrophysiological analysis of nigro-caudate evoked activities, Trans. Am. Neurol. Assoc. 91:236–238.Google Scholar
  95. Frigyesi, T. L., and Purpura, D. P., 1967, Electrophysiological analysis of reciprocal caudatonigral relations, Brain Res. 6:440–456.PubMedCrossRefGoogle Scholar
  96. Fuentes, J. A., and Del Rio, J., 1972, Striatal homovanillic acid levels in rats after combined treatments with amphetamine and neuroleptics, Eur. J. Pharmacol. 17:297–300.PubMedCrossRefGoogle Scholar
  97. Fuxe, K., 1963, Cellular localization of monoamines in the median eminence and in the infundibular stem of some mammals, Acta Physiol. Scand. 58:383–384.PubMedCrossRefGoogle Scholar
  98. Fuxe, K., 1965, Evidence for the existence of monoamine neurons in the central nervous system, Z. Zellforsch. 65:573–596.PubMedCrossRefGoogle Scholar
  99. Fuxe, K., and Hillarp, N. Å., 1964, Uptake of L-dopa and noradrenaline by central catecholamine neurons, Life Sci. 3:1403–1406.PubMedCrossRefGoogle Scholar
  100. Fuxe, K., and Hökfelt, T., 1966, Further evidence for the existence of tuberoinfundibular dopamine neurons, Acta Physiol. Scand. 66:245–246.PubMedCrossRefGoogle Scholar
  101. Fuxe, K., and Hökfelt, T., 1969, Cathecholamines in the hypothalamus and the pituitary gland, in: Frontiers in Neuroendocrinology (W. F. Ganong, and L. Martini, eds.), pp. 47–96, Oxford University Press, New York.Google Scholar
  102. Fuxe, K., and Hökfelt, T., 1970, Central monoaminergic systems and hypothalamic function, in: The Hypothalamus (Martini, Motta, and Fraschini, eds.), pp. 123–138, Academic Press, New York.Google Scholar
  103. Fuxe, K., and Hökfelt, T., 1971, Histochemical fluorescence detection of changes in central monoamine neurones provoked by drugs acting on the CNS, Triangle 10:73–84.PubMedGoogle Scholar
  104. Fuxe, K., Hökfelt, T., and Nilsson, O., 1972a, Effect of constant light and androgensterilization on the amine turnover of the tubero-infundibular dopamine neurons; blockade of cyclic activity and induction of a persistent high dopamine turnover in the median eminence, Acta Endocrinol. (Copenhagen) 69:625–639.Google Scholar
  105. Fuxe, K., Hökfelt, T., Sundstedt, C. D., Ahren, K., and Hamberger, L., 1972b, Amine turnover changes in the tubero-infundibular dopamine (DA) neurons in immature rats injected with PMS, Neuroendocrinology 10:282–300.PubMedCrossRefGoogle Scholar
  106. Gey, K. F., and Pletscher, A., 1968, Acceleration of turnover of 14C-catecholamines in rat brain by chlorpromazine, Experientia 24:335–336.PubMedCrossRefGoogle Scholar
  107. Glowinski, J., Axelrod, J., and Iversen, L. L., 1966, Regional studies of catecholamines in the rat brain. IV. Effects of drugs on the disposition and metabolism of [3H]norepinephrine and [3H]dopamine,J. Pharmacol. Exp. Ther. 153:30–41.PubMedGoogle Scholar
  108. Goldberg, L. I., Sonneville, P. F., and McNay, J. L., 1968, An investigation of the structural requirements for dopamine-like renal vasodilation: Phenylethylamines and apomorphine,J. Pharmacol Exp. Ther. 163:188–197.PubMedGoogle Scholar
  109. Goldstein, M., Anagnoste, B., Battista, A. F., Owen, W. S., and Nakatani, S., 1969, Studies of amines in the striatum in monkeys with nigral lesions: The disposition, biosynthesis and metabolites of [3H]dopamine and [14C]serotonin in the striatum,J. Neurochem. 16:645–652.PubMedCrossRefGoogle Scholar
  110. Graham, A. W., and Aghajanian, G. K., 1971, Effects of amphetamine on single cell activity in a catecholamine nucleus, the locus coeruleus, Nature 234:100–102.PubMedCrossRefGoogle Scholar
  111. Greengard, P., McAfee, D. A., and Kebabian, J. W., 1972, On the mechanism of action of cyclic AMP and its role in synaptic transmission, Advan. Cyclic Nucleotide Res. 1:373–390.Google Scholar
  112. Gutman, Y., and Weil-Malherbe, H., 1967, The intracellular distribution of brain catecholamines,J. Neurochem. 14:619–626.PubMedCrossRefGoogle Scholar
  113. Häggendal, J., and Malmfors, T., 1963, Evidence of dopamine-containing neurons in the retina of rabbits, Acta Physiol. Scand. 59:295–296.CrossRefGoogle Scholar
  114. Häggendal, J., and Malmfors, T., 1965, Identification and cellular localization of the catecholamines in the retina and the choroid of the rabbit, Acta Physiol. Scand. 64:58.CrossRefGoogle Scholar
  115. Herz, A., and Zieglgansberger, W., 1968, The influence of microelectrophoretically applied biogenic amines, cholinomimetics and procaine on synaptic excitation in the corpus striatum, Int. J. Neuropharmacol. 7:221–230.PubMedCrossRefGoogle Scholar
  116. Hökfelt, T., and Jonsson, G., 1968, Studies on reaction and binding of monoamines after fixation and processing for electron microscopy, Histochemie 16:45–67.PubMedCrossRefGoogle Scholar
  117. Hökfelt, T., and Ungerstedt, U., 1969, Electron and fluorescence microscopic studies on the nucleus caudatus putamen of the rat after unilateral lesions of ascending nigro-neostriatal dopamine neurons, Acta Physiol. Scand. 76:415–426.PubMedCrossRefGoogle Scholar
  118. Hökfelt, T., Jonsson, G., and Lilbrink, P., 1970, Electron microscopic identification of monoamine nerve ending particles by rat brain homogenates, Brain Res. 22:147–151.PubMedCrossRefGoogle Scholar
  119. Horn, A. S., and Snyder, S. H., 1971, Chlorpromazine and dopamine: Conformational similarities that correlate with the antischizophrenic acitivity of phenothiazine drugs, Proc. Natl. Acad. Sci. 68(10):2325–2328.PubMedCrossRefGoogle Scholar
  120. Hornykiewicz, O., 1966, Dopamine (3-hydroxytyramine) and brain function, Pharmacol. Rev. 18:925–964.PubMedGoogle Scholar
  121. Hornykiewicz, O., 1972, Neurochemistry of parkinsonism, in: Handbook of Neurochemistry (A. Lajtha, ed.), Plenum Press, New York.Google Scholar
  122. Hull, C. D., Bernardi, G., and Buchwald, N. Å., 1970, Intracellular responses of caudate neurons to brain stem stimulation, Brain Res. 22:163–179.PubMedCrossRefGoogle Scholar
  123. Iversen, S. D., Wilkinson, S., and Simpson, B., 1971, Enhanced amphetamine responses after frontal cortex lesions in the rat, Eur. J. Pharmacol. 13:387–390.PubMedCrossRefGoogle Scholar
  124. Jalfre, M., and Haefely, W., 1971, Effects of some centrally acting agents in rats after intraventricular injections of 6-hydroxydopamine, in: 6-Hydroxydopamine and Catecholamine Neurons (T. Malmfors, and H. Thoenen, eds.), pp. 333–346, North-Holland, Amsterdam.Google Scholar
  125. Javoy, F., and Glowinski, J., 1971, Dynamic characteristics of the “functional compartment” of dopamine in dopaminergic terminals of the rat striatum, J. Neurochem. 18:1305–1311.PubMedCrossRefGoogle Scholar
  126. Javoy, F., Agid, Y., Bouvet, D., and Glowinski, J., 1972, Feedback control of dopamine synthesis in dopaminergic terminals of the rat striatum, J. Pharmacol. Exp. Ther. 182:454–463.PubMedGoogle Scholar
  127. Jonas, W., and Scheel-Kruger, J., 1969, Amphetamine induced stereotyped behavior correlated with the accumulation of O-methylated dopamine, Arch. Int. Pharmacodyn. 177:379–389.PubMedGoogle Scholar
  128. Juorio, A. V., Sharman, D. F., and Trajkov, T., 1966, The effect of drugs on the homovanillic acid content of the corpus striatum of some rodents, Brit. J. Pharmacol. 26:385–392.PubMedGoogle Scholar
  129. Kamberi, I. A., and Kobayashi, Y., 1970, Monoamine oxidase activity in the hypothalamus and various other brain areas and in some endocrine glands of the rat during the estrus cycle, J. Neurochem. 17:261–268.PubMedCrossRefGoogle Scholar
  130. Kamberi, I. A., and McCann, S. M., 1969, Effect of biogenic amines, FSH-releasing factor (FRF) and other substances on the release of FSH by pituitaries incubated in vitro, Endrocrinology 85:815–824.CrossRefGoogle Scholar
  131. Kamberi, I. A., Mical, B. S., and Porter, J. C., 1969, Luteinizing hormone-releasing activity in hypophysial stalk blood and elevation by dopamine, Science 166:388–390.PubMedCrossRefGoogle Scholar
  132. Kamberi, I. A., Mical, R. S., and Porter, J. C., 1970a, Follicle stimulating hormone releasing activity in hypophysial portal blood and elevation by dopamine, Nature 227:714–715.PubMedCrossRefGoogle Scholar
  133. Kamberi, I. A., Mical, R. S., and Porter, J. C., 1970b, Intraventricular injection or pituitary perfusion of catecholamines and prolactin release, Fed. Proc. 29:378.Google Scholar
  134. Kamberi, I. A., Mical, R.S., and Porter, J. C., 1971a, Effect of anterior pituitary perfusion and intraventricular injection of catecholamines on FSH release, Endocrinology 88:1003–1011.PubMedCrossRefGoogle Scholar
  135. Kamberi, I. A., Mical, R.S., and Porter, J. C., 1971b, Effects of melatonin and serotonin on the release of FSH and prolactin, Endocrinology 88:1288–1293.PubMedCrossRefGoogle Scholar
  136. Kebabian, J. W., and Greengard, P., 1971, Dopamine-sensitive adenyl cyclase: Possible role in synaptic transmission, Science 174:1346–1349.PubMedCrossRefGoogle Scholar
  137. Kebabian, J. W., Petzold, G. L., and Greengard, P., 1972, Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor,” Proc. Natl. Acad. Sci. 69:2145–2149.PubMedCrossRefGoogle Scholar
  138. Kerkut, G. A., 1967, Biochemical aspects of invertebrate nerve cells, in: Invertebrate Nervous Systems (C. A. G. Wiersma, ed.), pp. 5–37, Chicago University Press, Chicago.Google Scholar
  139. Kier, L., 1973, Chlorpromazine and serotonin: Conformational similarities correlating activities, J. Theor. Biol. 40:211–217.PubMedCrossRefGoogle Scholar
  140. Kier, L. B., and Truitt, E. B., 1970, The preferred conformation of dopamine from molecular orbital theory, J. Pharmacol. Exp. Ther. 174:94–98.PubMedGoogle Scholar
  141. Kleinberg, D. L., Noel, G. L., and Frantz, A. G., 1971, Chlorpromazine stimulation and L-dopa suppression of plasma prolactin in man, J. Clin. Endocrinol. Metab. 33:873–876.CrossRefGoogle Scholar
  142. Kobayashi, T., Kobayashi, T., Kato, J., and Minaguchi, H., 1964, Fluctuations in monoamine oxidase activity in the hypothalamus of rat during the estrous cycle and after castration, Endocrinol. Jap. 11:283–290.CrossRefGoogle Scholar
  143. Kobayashi, H., Wada, M., and Uemura, H., 1972, The hypothalamic median eminence as a neuroendocrine organ, Med. J. Osaka Univ. 23:43–55.PubMedGoogle Scholar
  144. Kordon, C., and Glowinski, J., 1969, Selective inhibition of superovulation by blockade of dopamine synthesis during the “critical period” in the immature rat, Endocrinology 85:924–931.PubMedCrossRefGoogle Scholar
  145. Kostowski, W., 1972, Certain aspects of physiological role of dopamine as synaptic transmitter in the striatum, Acta Physiol. Pol. 23:567–583.Google Scholar
  146. Kramer, S. G., 1971, Dopamine: A retinal neurotransmitter. I. Retinal uptake, storage and light stimulated release of 3H-dopamine in vivo, Invest. Ophthalmol. 10:438–452.PubMedGoogle Scholar
  147. Kramer, S. G., Potts, A. M., and Mangnall, Y., 1971, Dopamine: A retinal neurotransmitter. II. Autoradiographic localization of 3H-dopamine in the retina, Invest. Ophthalmol. 10:617–624.PubMedGoogle Scholar
  148. Kuczenski, R. T., and Mandell, A. J., 1972, Regulatory properties of soluble and particulate rat brain tyrosine hydroxylase, J. Biol. Chem. 247:3114–3122.PubMedGoogle Scholar
  149. Kuntzman, R., Shore, P. A., Bogdanski, D., and Brodie, B. B., 1961, Microanalytical procedures for fluorometric assay of brain DOPA-5HTP decarboxylase, norepinephrine and serotonin, and a detailed mapping of decarboxylase activity in brain, J. Neurochem. 6:226–232.CrossRefGoogle Scholar
  150. Lal, S., and Sourkes, T. L., 1972, Effect of various chlorpromazine metabolites on amphetamine-induced stereotyped behavior in the rat, Eur. J. Pharmacol. 17:283–286.PubMedCrossRefGoogle Scholar
  151. Laties, A. M., and Jacobowitz, D., 1966a, A comparative study of the autonomic innervations of the eye in monkey, cat and rabbit, Anat. Rec. 156:383.PubMedCrossRefGoogle Scholar
  152. Laties, A. M., and Jacobowitz, D., 1966b, Histochemical studies of monoamine-containing cells in the monkey retina, J. Histochem. Cytochem. 14:823.Google Scholar
  153. Laursen, A. M., 1962, Movements evoked from the region of the caudate nucleus in cats, Acta Physiol. Scand. 54:175–184.PubMedCrossRefGoogle Scholar
  154. Laverty, R., Michaelson, I. A., Sharman, D. F., and Whittaker, V. P., 1963, The subcellular localization of dopamine and acetylcholine in the dog caudate nucleus, Brit. J. Pharmacol. Chemother. 21:482–490.Google Scholar
  155. Lewitt, M., Spector, S., Sjoerdsma, A., and Udenfriend, S., 1965, Elucidation of the rate limiting step in norepinephrine biosynthesis in the perfused guinea-pig heart,J. Pharmacol. Exp. Ther. 148:1.Google Scholar
  156. Libet, B., and Tosaka, T., 1970, Dopamine as a synaptic transmitter and modulator in sympathetic ganglia: A different mode of synaptic action, Proc. Natl. Acad. Sci. 67:667–673.PubMedCrossRefGoogle Scholar
  157. Lichtensteiger, W., and Langemann, H., 1966, Uptake of exogenous catecholamines by monoamine-containing neurons of the central nervous system: Uptake of catecholamines by arcuato-infundibular neurons, J. Pharmacol. Exp. Ther. 151:400.PubMedGoogle Scholar
  158. Lindvall, O., Bjorklund, A., Moore, R., and Stenevi, U., 1974, Mesencephalic dopamine neurons projecting to neocortex, Brain Res. 81:325–331.PubMedCrossRefGoogle Scholar
  159. Lloyd, K., and Hornykiewicz, O., 1970, Occurrence and distribution of L-dopa decarboxylase in the human brain, Brain Res. 22:426–428.PubMedCrossRefGoogle Scholar
  160. Malarkey, W. B., Jacobs, L. S., and Daughaday, W. H., 1971, Levodopa suppression of prolactin in nonpuerperal galactorrhea, New Engl. J. Med. 285:1160–1163.PubMedCrossRefGoogle Scholar
  161. Marsden, C. A., and Guldberg, H. C., 1973, The role of monoamines in rotation induced or potentiated by amphetamine after nigral, raphe and mesencephalic reticular lesions in the rat brain, Neuropharmacology 12:195–211.PubMedCrossRefGoogle Scholar
  162. Matsui, T., 1967, Effects on the rat estrous cycle of implants of norepinephrine placed in the median eminence, Annot. Zool. Jap. 40:74–81.Google Scholar
  163. McAfee, D. A., and Greengard, P., 1972, Cyclic AMP: Electrophysiological evidence for a role in synaptic transmission in mammalian sympathetic ganglia, Science 178:310–312.PubMedCrossRefGoogle Scholar
  164. McDowell, J. J. H., 1969, Crystal and molecular structure of chlorpromazine, Acta Crystallog. B25:2175.Google Scholar
  165. McGeer, E. G., McGeer, P. L., and Wada, J. A., 1971, Distribution of tyrosine hydroxylase in human and animal brain, J. Neurochem. 18:1647–1658.PubMedCrossRefGoogle Scholar
  166. McKenzie, G. M., 1972, Role of the tuberculum olfactorium in stereotyped behavior induced by apomorphine in the rat, Psychopharmacologia 23:212–219.PubMedCrossRefGoogle Scholar
  167. McKenzie, G. M., and Szerb, J. C., 1968, The effect of dihydroxyphenylalanine, pheniprazine and dextroamphetamine on the in vivo release of dopamine from the caudate nucleus, J. Pharmacol. Exp. Ther. 162:302–308.PubMedGoogle Scholar
  168. McLennan, H., 1964, The release of acetylcholine and of 3-hydroxytyramine from the caudate nucleus, J. Physiol. 174:152–161.PubMedGoogle Scholar
  169. McLennan, H., 1965, The release of dopamine from the putamen, Experientia 21:725.PubMedCrossRefGoogle Scholar
  170. McLennan, H., 1970, Synaptic Transmission, Saunders, pp. 78–80, Philadelphia.Google Scholar
  171. McLennan, H., and York, D. H., 1967, The action of dopamine on neurones of the caudate nucleus, J. Physiol. 189:393–402.PubMedGoogle Scholar
  172. McLennan, H., Emmons, P. R., and Plummer, P. M., 1964, Some behavioral effects of stimulation of the caudate nucleus in unrestrained cats, Canad. J. Physiol. Pharmacol. 42:329–339.CrossRefGoogle Scholar
  173. Montagu, K. A., 1957, Catechol compounds in rat tissues and in brains of different animals, Nature 180:244.PubMedCrossRefGoogle Scholar
  174. Moore, R. Y., Bhatnagar, R. K., and Heller, A., 1971, Anatomical and chemical studies of a nigro-neostriatal projection in the cat, Brain Res. 30:119–136.PubMedCrossRefGoogle Scholar
  175. Natgatsu, T., Levitt, M., and Udenfriend, S., 1964, The initial step in norepinephrine biosynthesis,J. Biol. Chem. 239:2910–2917.Google Scholar
  176. Naylor, R. J., and Olley, J. E., 1972, Modification of the behavioral changes induced by amphetamine in the rat by lesions in the caudate nucleus, the caudate-putamen and globus pallidus, Neuropharmacology 11:91–99.PubMedCrossRefGoogle Scholar
  177. Neff, N. H., and Costa, E., 1968, Application of steady-state kinetics to the study of catecholamine turnover after monoamine oxidase inhibition of reserpine administration, J. Pharmacol. Exp. Ther. 160:40–47.PubMedGoogle Scholar
  178. Ng, K. Y., Chase, T. N., Colburn, R. W., and Kopin, I. J., 1971, Dopamine: Stimulation-induced release from central neurons, Science 172:487–489.PubMedCrossRefGoogle Scholar
  179. Nichols, C. W., Jacobowitz, D., and Hottenstein, M., 1967, The influence of light and dark on the catecholamine content of the retina and choroid, Invest. Ophthalmol. 6:642.PubMedGoogle Scholar
  180. Nose, T., Segawa, T., and Takagi, H., 1972, Subcellular localization of dopamine in the rat striatum, Jap. J. Pharmacol. 22:867–869.PubMedCrossRefGoogle Scholar
  181. Nybäck, H., and Sedvall, G., 1968, Effect of chlorpromazine on accumulation and disappearance of catecholamines formed from tyrosine-C14 in brain, J. Pharmacol. Exp. Ther. 162:294–301.PubMedGoogle Scholar
  182. Nybäck, H., and Sedvall, G., 1970, Further studies on the accumulation and disappearance of catecholamines formed from tyrosine 14C in mouse brain, Eur. J. Pharmacol. 10:193–205.PubMedCrossRefGoogle Scholar
  183. Nybäck, H., Sedvall, G., and Kopin, I. J., 1967, Accelerated synthesis of dopamine-14C from tyrosine-14C in rat brain after chlorpromazine, Life Sci. 6:2307–2312.PubMedCrossRefGoogle Scholar
  184. Nybäck, H., Borzecki, A., and Sedvall, G., 1968, Accumulation and disappearance of catecholamines formed from tyrosine-l4C in mouse brain: Effect of some psychiatric drugs, Eur. J. Pharmacol. 4:395–403.PubMedCrossRefGoogle Scholar
  185. Odake, G., 1967, Fluorescence microscopy of the catecholamine-containing neurons of the hypothalamohypophyseal system, Z. Zellforsch. 82:46–64.PubMedCrossRefGoogle Scholar
  186. O’Keefe, R., Sharman, D. F., and Vogt, M., 1970, Effect of drugs used in psychoses on cerebral dopamine metabolism, Brit. J. Pharmacol. 38:287–305.CrossRefGoogle Scholar
  187. Papeschi, R., 1972, Dopamine, extrapyramidal system and psychomotor function, Psychiat. Neurol. Neurochir. 75:13–48.PubMedGoogle Scholar
  188. Persson, T., and Waldeck, B., 1970, Further studies on the possible interaction between dopamine and noradrenaline containing neurons in the brain, Eur. J. Pharmacol. 11:315–320.PubMedCrossRefGoogle Scholar
  189. Philippu, A., and Heyd, W., 1970, Release of dopamine from subcellular particles of the striatum, Life Sci. 9:361–373.PubMedCrossRefGoogle Scholar
  190. Pinder, R. M., Buxton, D. A., and Green, D. M., 1971, On the dopamine-like action of apomorphine, J. Pharm. Pharmacol. 23:995–996.PubMedCrossRefGoogle Scholar
  191. Poirier, L. J., and Sourkes, T. L., 1965, Influence of the substantia nigra on the catecholamine content of the striatum, Brain 88:181–192.PubMedCrossRefGoogle Scholar
  192. Poirier, L. J., Sourkes, T. L., Bouvier, G., Boucher, R., and Carabin, S., 1966, Striatal amines, experimental tremor and the effect of harmaline in the monkey, Brain 89:37–52.PubMedCrossRefGoogle Scholar
  193. Portig, P. J., and Vogt, M., 1968, Activation of a dopaminergic nigrostriatal pathway, J.Physiol. 197:20–2 IP.Google Scholar
  194. Portig, P. J., Sharman, D. F., and Vogt, M., 1968, Release by tubocurarine of dopamine and homovanillic acid from the superfused caudate nucleus, J. Physiol. 194:565–572.PubMedGoogle Scholar
  195. Randrup, A., 1970, Role of brain dopamine in the antipsychotic effects of neuroleptics, in: The Neuroleptics, Vol. 5 of Modern Problems in Pharmacopsychiatry (D. P. Bobon, P. A. J. Janssen and J. Bobon, eds.), pp. 60–65, Karger, Basel.Google Scholar
  196. Randrup, A., and Jonas, W., 1967, Brain dopamine and the amphetamine-reserpine interaction, J. Pharm. Pharmacol. 19:483–484.PubMedCrossRefGoogle Scholar
  197. Randrup, A., and Munkvad, I., 1967, Stereotyped activities produced by amphetamine in several animal species and man, Psychopharmacologia 11:300–310.PubMedCrossRefGoogle Scholar
  198. Randrup, A., and Munkvad, I., 1968, Behavioral stereotypies induced by pharmacological agents, Pharmakopsychiat. Neuropsychopharmakol. 1:18–26.CrossRefGoogle Scholar
  199. Randrup, A., and Scheel-Kruger, J., 1966, Diethyldithiocarbamate and amphetamine stereotype behavior, J. Pharm. Pharmacol. 18:752.PubMedCrossRefGoogle Scholar
  200. Richards, J. G., and Tranzer, J. P., 1970, The ultrastructural localization of amine storage sites in the central nervous system with the aid of a specific marker, 5-hydroxydopamine, Brain Res. 17:463–469.PubMedCrossRefGoogle Scholar
  201. Riddell, D., and Szerb, J. C., 1971, The release in vivo of dopamine synthesized from labeled precursors in the caudate nucleus of the cat, J. Neurochem. 18:989–1006.PubMedCrossRefGoogle Scholar
  202. Rosengren, E., 1960, On the role of monoamine oxidase for the inactivation of dopamine in brain, Acta Physiol. Scand. 49:370–375.PubMedCrossRefGoogle Scholar
  203. Rotrosen, J., Angrist, B. M., Wallach, M. B., and Gershon, S., 1972, Absence of serotonergic influence on apomorphine-induced stereotypy, Eur. J. Pharmacol. 20:133–135.PubMedCrossRefGoogle Scholar
  204. Sano, I., Gamo, T., Kamimoto, Y., Taniguchi, K., Takesada, M., and Nishinuma, K., 1959, Distribution of catechol compounds in human brain, Biochim. Biophys. Acta 32:586–587.PubMedCrossRefGoogle Scholar
  205. Sano, Y., Odake, G., and Taketomo, S., 1967, Fluorescence microscopic and electron microscopic observations on the tuberohypophyseal tract, Neuroendocrinology 2:30–42.CrossRefGoogle Scholar
  206. Sano, Y., Yoshikawa, H., and Konishi, M., 1968, Fluorescence microscopic observations on the dog retina, Arch. Histol. Jap. 30:75.PubMedCrossRefGoogle Scholar
  207. Sawyer, G. H., Markee, J. E., and Townsend, B. F., 1949, Cholinergic and adrenergic components in the neurohumoral control of the release of LH in the rabbit, Endocrinology 44:18.PubMedCrossRefGoogle Scholar
  208. Schneider, H. P. G., and McCann, S. M., 1969, Possible role of dopamine or transmitter to promote discharge of LH-releasing factor, Endocrinology 85:121–132.PubMedCrossRefGoogle Scholar
  209. Selby, G., 1968, Cerebral atrophy in parkinsonism, J. Neurol. Sci. 6:517–559.PubMedCrossRefGoogle Scholar
  210. Smythe, G. A., and Lazarus, L., 1973, Blockade of the dopamine-inhibitory control of prolactin secretion in rats by 3,4 dimethoxyphenylethylamine (3,4 di-O-methyldopamine), Endocrinology 93:147–151.PubMedCrossRefGoogle Scholar
  211. Spector, S., 1966, Inhibitors of endogenous catecholamine biosynthesis, Pharmacol. Rev. 18:599.PubMedGoogle Scholar
  212. Spencer, H. J., and Havlicek, V., 1973, Responses of cortically modulated rat striatal cells to iontophoretically applied neurotransmitter candidates, Proc. Neurosci. Soc., p. 371.Google Scholar
  213. Stevens, J. R., Kim, C., and McLean, P. D., 1961, Stimulation of caudate nucleus. Behavioral effects of chemical and electrical excitation, Arch. Neurol. (Chic.) 4:47.CrossRefGoogle Scholar
  214. Straschill, M., and Perwein, J., 1969, The inhibition of retinal ganglion cells by catecholamines and gamma-aminobutyric acid, Pfluegers Arch. 312:45.CrossRefGoogle Scholar
  215. Taylor, K. M., and Snyder, S. H., 1970, Amphetamine: Differentiation by d and l isomersof behavior involving brain norepinephrine or dopamine, Science 168:1487–1489.PubMedCrossRefGoogle Scholar
  216. Tennyson, V. M., Barrett, R. E., Cohen, G., Côté, L., Heikkila, R., and Mytilineou, C., 1972, The developing neostriatum of the rabbit: Correlation of fluorescence histochemistry, electron microscopy, endogenous dopamine levels and [3H]dopamine uptake, Brain Res. 46:251–285.PubMedCrossRefGoogle Scholar
  217. Terasawa, E., and Sawyer, C. H., 1969, Changes in electrical activity in the rat hypothalamus related to electrochemical stimulation of adenohypophyseal function, Endocrinology 85:143–149.PubMedCrossRefGoogle Scholar
  218. Ther, L., and Schramm, H., 1962, Apomorphine-Synergismus (Zwangsnagen bei Mausen) als Test zur Differenzierung psychotroper Substanzen, Arch. Int. Pharmacodyn. 138:302–310.PubMedGoogle Scholar
  219. Thierry, A. M., Stinus, L., Blanc, G., and Glowinski, J., 1973, Some evidence for the existence of dopaminergic neurons in the rat cortex, Brain Res. 50:230–234.PubMedCrossRefGoogle Scholar
  220. Udenfriend, S., 1966, Tyrosine hydroxylase, Pharmacol. Rev. 18:43.PubMedGoogle Scholar
  221. Uemura, H., and Kobayashi, H., 1971, Effects of dopamine implanted in the median eminence on the estrous cycle of the rat, Endocrinol. Jap. 18:91–100.CrossRefGoogle Scholar
  222. Ungerstedt, U., 1968, 6-Hydroxydopamine induced degeneration of central monoamine neurons, Eur. J. Pharmacol. 5:107–110.PubMedCrossRefGoogle Scholar
  223. Ungerstedt, U., 1969, Behavioural registration of dopamine synaptic activity in the brain after 6-hydroxydopamine lesions, Acta Physiol. Scand. 77:117 (Suppl. 330).Google Scholar
  224. Ungerstedt, U., 1971a, Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour, Acta Physiol. Scand. 367:49–58.Google Scholar
  225. Ungerstedt, U., 1971b, Histochemical studies on the effects of intracerebral and intraventricular injection of 6-hydroxydopamine on monoamine neurons in the rat brain, in: 6-Hydroxydopamine and Catecholamine Neurons (T. Malmfors, and H. Thoenen, eds.), pp. 101–127, North-Holland, Amsterdam.Google Scholar
  226. Ungerstedt, U., 1971c, Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system, Acta Physiol. Scand. Suppl. 367:69–93.PubMedGoogle Scholar
  227. Ungerstedt, U., and Arbuthnott, G. W., 1970, Quantitative recording of rotational behavior in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system, Brain Res. 24:485–493.PubMedCrossRefGoogle Scholar
  228. Ungerstedt, U., Butcher, L. L., Butcher, S. G., Andén, N. E., and Fuxe, K., 1969, Direct chemical stimulation of dopaminergic mechanisms in the neostriatum of the rat, Brain Res. 14:461–471.PubMedCrossRefGoogle Scholar
  229. Uretsky, N. J., and Iversen, L. L., 1970, Effects of 6-hydroxydopamine on catecholamine containing neurons in the rat brain, J. Neurochem, 17:269–278.PubMedCrossRefGoogle Scholar
  230. Valzelli, L., and Garattini, S., 1968, Biogenic amines in discrete brain areas after treatment with monoamineoxidase inhibition, J. Neurochem. 15:259–261.PubMedCrossRefGoogle Scholar
  231. van Rossum, J. M., 1967, The significance of dopamine-receptor blockade for the action of neuroleptic drugs, in: Neuropsychopharmacology, Vol. 5 (H. Brill et al., eds.), pp. 321–329, Excerpta Medica Foundation International Congress Series, No. 129, Amsterdam.Google Scholar
  232. Vogt, M., 1969, Release from brain tissue of compounds with possible transmitter function: Interaction of drugs with these substances, Brit. J. Pharmacol. 37:325–337.CrossRefGoogle Scholar
  233. Von Euler, U. S., 1958, Distribution and metabolism of catechol hormone in tissues and axons, in: Recent Progress of Hormone Research, Vol. 14, (G. Pincus, ed.), pp. 483–507, Academic Press, New York.Google Scholar
  234. von Voigtlander, P. F., and Moore, K. E., 1971, The release of H3-dopamine from cat brain following electrical stimulation of the substantia nigra and caudate nucleus, Neuropharmacology, 10:733–741.CrossRefGoogle Scholar
  235. von Voiglander, P. F., and Moore, K. E., 1973a, Involvement of nigrostriatal neurons in the in vivo release of dopamine by amphetamine, amantadine and tyramine, J. Pharmacol. Exp. Ther. 184:542–552.Google Scholar
  236. von Voigtlander, P. F., and Moore, K. E., 1973b, Turning behavior of mice with unilateral 6-hydroxydopamine lesions in the striatum: Effects of apomorphine, L-dopa, amantadine, amphetamine and other psychomotor stimulants, Neuropharmacology. 12:451–462.CrossRefGoogle Scholar
  237. Webster, K. E., 1965, The cortico-striatal projection in the cat, J. Anat. 99:329–337.PubMedGoogle Scholar
  238. Weil-Malherbe, H., and Bone, A. D., 1957, Intracellular distribution of catecholamines in the brain, Nature 180:1050PubMedCrossRefGoogle Scholar
  239. Weiner, R. I., Blake, C. A., Rubinstein, L., and Sawyer, C. H., 1971, Electrical activity of the hypothalamus: Effects of intraventricular catecholamines, Science 171:411–412.PubMedCrossRefGoogle Scholar
  240. Werman, R., 1966, A review—Criteria for identification of a central nervous system transmitter, Comp. Biochem. Physiol. 18:745–766.PubMedCrossRefGoogle Scholar
  241. White, R. P., and Himwich, H. E., 1957, Circus movements and excitation of striatal and mesodiencephalic centers in rabbits, J. Neurophysiol. 20:81–90.PubMedGoogle Scholar
  242. Woodruff, G. N., 1971, Dopamine receptors: A review, Comp. Gen. Pharmacol. 2:439–455.PubMedCrossRefGoogle Scholar
  243. York, D. H., 1967, The inhibitory action of dopamine on neurons of the caudate nucleus, Brain Res. 5:263–266.PubMedCrossRefGoogle Scholar
  244. York, D. H., 1970, Possible dopaminergic pathway from substantia nigra to putamen, Brain Res. 20:233–249.PubMedCrossRefGoogle Scholar
  245. York, D. H., 1972, Dopamine receptor blockade—A central action of chlorpromazine on striatal neurons, Brain Res. 37:91–99.PubMedCrossRefGoogle Scholar
  246. York, D. H., 1973a, Antagonism of descending effects of the substantia nigra on lumbo-sacral monosynaptic reflexes, Neuropharmacology 12:629–636.PubMedCrossRefGoogle Scholar
  247. York, D. H., 1973b, Motor responses induced by stimulation of the substantia nigra, Exp. Neurol. 41:323–330.PubMedCrossRefGoogle Scholar
  248. York, D. H., 1975, Electrophysiology of the nigro-putamen dopamine pathway in: International Encyclopedia of Pharmacology and Therapeutics, Sec. 25 (O. Hornykiewicz, ed.), Pergamon Press, Oxford.Google Scholar
  249. York, D. H., Baker, F. L., and Kraicer, J., 1971, Electrical properties of cells in the adenohypophysis—An in vivo study, Neuroendocrinology 8:10–16.PubMedCrossRefGoogle Scholar
  250. York, D. H., Baker, F. L., and Kraicer, J., 1973, Electrical changes induced in rat adenohypophysial cells, in vivo, with hypothalamic extract, Neuroendocrinology 11:212–228.PubMedCrossRefGoogle Scholar
  251. Zirkle, C. L., and Kaiser, C., 1970, in: Medical Chemistry Series Review (A. Burger, ed.), p. 1410, Interscience, New York.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Donald H. York
    • 1
  1. 1.Department of PhysiologyUniversity of MissouriColumbiaUSA

Personalised recommendations