Amine Receptors in CNS. I. Norepinephrine

  • Floyd E. Bloom
Part of the Handbook of Psychopharmacology book series (HBKPS, volume 6)


Among the neurochemicals considered to be candidates for synaptic transmitter function within the central nervous system, the conceptual link to psychopharmacological actions has been particularly strong for norepinephrine (NE). Basic research in psychiatry has concentrated on the changes in brain monoamine metabolism produced by psychoactive drugs (see Snyder, 1974) to develop catecholamine theories of mental diseases. In such a psychopharmacological model, NE is presumed to be a central synaptic transmitter, but the actual functional controls (i.e., excitation or inhibition) exerted by such synapses, their exact cellular location, and their mechanism of action have not been known. This chapter will focus on the methods by which the central receptors for NE may be characterized as to location, function, and pharmacological significance.


Purkinje Cell Purkinje Neuron Cerebellar Purkinje Cell Hippocampal Pyramidal Cell Norepinephrine Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G. K., and Bloom, F. E., 1967, Electron microscopic localization of H3-norepinephrine in rat brain by electron microscopic autoradiography: Effect of drugs, J. Pharmacol. 156:407–416.Google Scholar
  2. Anderson, E. G., Haas, H. L., and Hosli, L., 1973, Comparison of noradrenaline and histamine with cyclic AMP on brain stem neurones, Brain Res. 49:471–475.PubMedCrossRefGoogle Scholar
  3. Avanzino, G. L., Bradley, P. B., and Wolstencroft, J. H., 1966, Pharmacological properties of neurones of the paramedian reticular nucleus, Experientia 22:410.PubMedCrossRefGoogle Scholar
  4. Barker, J. L., Crayton, J. C. and Nicoll, R. A., 1971, Supraoptic neurosecretory cells: Adrenergic and cholinergic sensitivity, Science 171:208–210.PubMedCrossRefGoogle Scholar
  5. Berridge, M. J., and Prince, W. T., 1972, Effects of serotonin and cyclic AMP on insect salivary gland, Advan. Cyclic Nucleotide Res. 1:137–147.Google Scholar
  6. Biscoe, T. J., and Curtis, D. R., 1966, Noradrenaline and inhibition of Renshaw cells, Science 151:1231–1232.CrossRefGoogle Scholar
  7. Blackstad, T. W., Fuxe, K., and Hokfelt, T., 1967, Noradrenaline nerve terminals in the hippocampal region of the rat and guinea pig, Z. Zellforsch. 78:463–473.PubMedCrossRefGoogle Scholar
  8. Bloom, F. E., 1968, Electrophysiological pharmacology of single nerve cells, in: PsychopharmacologyA Ten Year Progress Report (D. H. Efron, ed.), pp. 355–373, Government Printing Office, Washington, D.C.Google Scholar
  9. Bloom, F. E., 1971, Fine structural changes in rat brain after intracisternal injection of 6-hydroxydopamine, in: 6-Hydroxydopamine and Catecholamine Neurons (H. Thoenen, ed.), pp. 135–150, North-Holland, Amsterdam.Google Scholar
  10. Bloom, F. E., 1973, Ultrastructural identification of catecholamine-containing central synaptic terminals,J. Histochem. Cytochem. 21:333–348.PubMedCrossRefGoogle Scholar
  11. Bloom, F. E., 1974, To spritz or not to spritz: The doubtful value of aimless iontophoresis, Life Sci. 14:1819–1834.PubMedCrossRefGoogle Scholar
  12. Bloom, F. E., and Costa, E., 1971, The effects of drugs on serotonergic nerve terminals, Advan. Cytopharmacol. 379–395.Google Scholar
  13. Bloom, F. E., and Hoffer, B. J., 1974, Norepinephrine as a central synaptic transmitter, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), Pergamon Press, New York.Google Scholar
  14. Bloom, F. E., Oliver, A. P., and Salmoiraghi, G. C., 1963, The responsiveness of individual hypothalamic neurons to microelectrophoretically administered endogenous amines. Int. J. Neuropharmacol. 2:181–193.CrossRefGoogle Scholar
  15. Bloom, F. E., Costa, E., and Salmoiraghi, G. C., 1964, Analaysis of individual rabbit olfactory bulb neuron response to microelectrophoresis of acetylcholine, norepinephrine and serotonin synergists and antagonists, J. Pharmacol. 146:16–23.Google Scholar
  16. Bloom, F. E., Hoffer, B. J., and Siggins, G. R., 1971, Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. I. Localization of the fibers and their synapses, Brain Res. 25:501–521.PubMedCrossRefGoogle Scholar
  17. Bloom, F. E., Hoffer, B. J., Siggins, G. R., Barker, J. L., and Nicoll, R. A., 1972a, Effects of serotonin on central neurons: Microiontophoretic administration, Fed. Proc. 31:97–106.PubMedGoogle Scholar
  18. Bloom, F. E., Hoffer, B. J., and Siggins, G. R., 1972b, Norepinephrine mediated synapses: A model system for neuropsychopharmacology, Biol. Psychiat. 4:157–177.PubMedGoogle Scholar
  19. Boakes, R. J., Cand, J. M., and Wolstencroft, J. H., 1968, Agonistic and antagonistic effects of alpha methylnoradrenaline at central receptors, Brain Res. 11:450–452.PubMedCrossRefGoogle Scholar
  20. Boakes, R. J., Bradley, P. B., Brookes, N., Candy, J. M., and Wolstencroft, J. H., 1971, Actions of noradrenaline, other sympathomimetic amines and antagonists on neurones in the brainstem of the cat, Brit. J. Pharmacol. 41:262–271.CrossRefGoogle Scholar
  21. Bradley, P. B. and Wolstencroft, J. H., 1962 Excitation and inhibition of brainstem neurones by noradrenaline and acetylcholine, Nature 196:840–841.PubMedCrossRefGoogle Scholar
  22. Bradley, P. B., Wolstencroft, J. H., Hosli, L., and Avanzino, G. L., 1966, Neuronal basis for the central action of chlorpromazine, Nature 212:1425–1427.PubMedCrossRefGoogle Scholar
  23. Brown, J. H., and Makman, M. H., 1973, Dopamine sensitive adenylate cyclase of retina, J. Neurochem. 21:477–479.PubMedCrossRefGoogle Scholar
  24. Chu, N.-S., and Bloom, F. E., 1974, The catecholamine-containing neurons in the cat dorso-lateral pontine tegmentum: Distribution of the cell bodies and some axonal projections, Brain Res. 66:1–21.CrossRefGoogle Scholar
  25. Couch, J., 1970, Responses of neurons in the raphe nuclei to serotonin, norepinephrine and acetylcholine and their correlation with an excitatory synaptic input, Brain Res. 19:137–150.PubMedCrossRefGoogle Scholar
  26. Cowan, W. M., Gottlieb, D. I., Hendrickson, A. E., Price, J. L., and Woolsey, T. A., 1972, The autoradiographic demonstration of axonal connections in the central nervous system, Brain Res. 37:21–35.PubMedCrossRefGoogle Scholar
  27. Curtis, D. R., and Davis, R., 1962, Pharmacological studies upon neurons of the lateral geniculate nucleus of the cat, Brit. J. Pharmacol. 18:217–246.PubMedGoogle Scholar
  28. Curtis, D. R., Phillis, J. W., and Watkins, J. C., 1961, Cholinergic and non-cholinergic transmission in the mammalian spinal cord, J. Physiol. 158:296–323.PubMedGoogle Scholar
  29. Dahlström, A., Fuxe, K., Olson, L., and Ungerstedt, U., 1965, On the distribution and possible function of monoamine nerve terminals in the olfactory bulb of the rabbit, Life Sci. 4:2071–2076.PubMedCrossRefGoogle Scholar
  30. Engberg, I., and Marshall, K. C., 1971, Mechanism of noradrenaline hyperpolarization in spinal cord motoneurons of the cat, Acta Physiol. Scand. 83:142–144.PubMedCrossRefGoogle Scholar
  31. Feltz, P., and deChamplain, J., 1972, Enhanced sensitivity of caudate neurons to microion-tophoretic injections of dopamine in 6-hydroxydopamine-treated cats, Brain Res. 43:601–605.PubMedCrossRefGoogle Scholar
  32. Frederickson, R., Jordan, L., and Phillis, J. W., 1972, The action of noradrenalin on cortical neurons, Brain Res. 35:556–560.CrossRefGoogle Scholar
  33. Godfraind, J. M., and Pumain, R., 1971, Cyclic adenosine monophosphate and norepinephrine: Lack of effect on Purkinje cells in rat cerebellar cortex, Science 174:1257.PubMedCrossRefGoogle Scholar
  34. Haksar, A., and Peron, F. G., 1972, The interaction between cyclic AMP and Ca++ in the effects of ACTH on adrenal cortical cells, Biochem. Biophys. Res. Commun. 47:445–450.PubMedCrossRefGoogle Scholar
  35. Hoffer, B. J., Siggins, G. R., and Bloom, F. E., 1969, Prostaglandins E1 and E2 antagonize norepinephrine effects on cerebellar Purkinje cells: Microelectrophoretic study, Science 166:1418–1420.PubMedCrossRefGoogle Scholar
  36. Hoffer, B. J., Siggins, G. R., and Bloom, F. E., 1971a, Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis, Brain Res. 25:523–534.PubMedCrossRefGoogle Scholar
  37. Hoffer, B. J., Siggins, G. R., Woodward, D. J., and Bloom, F. E., 1971b, Spontaneous discharge of Purkinje neurons after destruction of catecholamine-containing afferents by 6-hydroxydopamine, Brain Res. 30:425–430.PubMedCrossRefGoogle Scholar
  38. Hoffer, B. J., Siggins, G. R., Oliver, A. P., and Bloom, F. E., 1972, Cyclic adenosine monophosphate mediated adrenergic synapses to cerebellar Purkinje cells, Advan. Cyclic Nucleotide Res. 1:411–423.Google Scholar
  39. Hoffer, B. J., Siggins, G. R., Oliver, A. P., and Bloom, F. E., 1973, Activation of the pathway from locus coeruleus to rat cerebellar Purkinje neurons: Pharmacological evidence of noradrenergic central inhibition, J. Pharmacol. Exp. Ther. 184:553–569.PubMedGoogle Scholar
  40. Hökfelt, T., 1967, Electron microscopic studies on brain slices from regions rich in catecholamines, Acta Physiol. Scand. 69:119–121.PubMedCrossRefGoogle Scholar
  41. Hökfelt, T., and Fuxe, K., 1969, Cerebellar monoamine nerve terminals, a new type of afferent fiber to the cortex cerebelli, Exp. Brain Res. 9:63–75.PubMedCrossRefGoogle Scholar
  42. Hori, T., and Nakayama, 1973, Effects of biogenic amines on central thermo-responsive neurons in the rabbit, J. Physiol. 232:71–85.PubMedGoogle Scholar
  43. Kebabian, J. W., Petzold, G., and Greengard, P., 1972, Dopamine sensitive adenylate cyclase in caudate nucleus of rat brain and its similarities to the dopamine receptor, Proc. Natl. Acad. Sci. 69:2145–2149.PubMedCrossRefGoogle Scholar
  44. Kukovetz, W., and Poch, G., 1970, Inhibition of cyclic 3′,5′-nucleotide-phosphodiesterase as a possible mode of action of papaverine and similarly acting drugs, Naunyn Schmiedeberg’s Arch. Pharmakol.. 267:189–194.CrossRefGoogle Scholar
  45. Iversen, L. L., and Schon, F., 1973, The use of autoradiographic techniques for the identification and mapping of transmitter specific neurons in CNS, in: New Concepts in Transmitter Regulation (A. Mandell, ed.), Plenum Press, New York.Google Scholar
  46. Johnson, E. S., Roberts, M. H. T., Sobieszek, A., and Straughan, D. W., 1969a, Noradrenaline sensitive cells in cat cerebral cortex, Int. J. Neuropharmacol. 8:549–557.PubMedCrossRefGoogle Scholar
  47. Johnson, E. S., Roberts, M. H. T., and Straughan, D. W., 1969b, The responses of cortical neurones to monoamines under differing anesthetic conditions, J. Physiol. 203:261–275.PubMedGoogle Scholar
  48. Krebs, H., and Bindra, D., 1971, Noradrenaline and “chemical coding” of hypothalamic neurons, Nature 229:179–180.Google Scholar
  49. Krnjević, K., and Phillis, J. W., 1963a, Iontophoretic studies of neurons in mammalian cerebral cortex, J. Physiol. 165:274–304.PubMedGoogle Scholar
  50. Krnjević, K., and Phillis, J. W., 1963b, Actions of certain amines on cerebral cortical neurons, Brit. J. Pharmacol. 20:471–490.PubMedGoogle Scholar
  51. Kukovetz, W. R., and Poch, G., 1970, Inhibition of cyclic 3′-5′-nucleotide phosphodiesterase as a possible mode of action of papaverine and similarly acting drugs, Naunyn-Schmiedebergs Arch. Pharmakol. 267:189–194.PubMedCrossRefGoogle Scholar
  52. Lake, N., and Jordan, L. M., 1974, Failure to confirm norepinephrine as second messenger for norepinephrine in rat cerebellum, Science 183:663–664.PubMedCrossRefGoogle Scholar
  53. Lake, N., Jordan, L. M., and Phillis, J. W., 1973a, Evidence against cyclic AMP mediation of noradrenaline depression of cerebral cortical neurons, Brain Res. 60:411–421.PubMedCrossRefGoogle Scholar
  54. Lake, N., Yarborough, G. G., and Phillis, J. W., 1973b, Effects of ethanol on cerebral cortical neurons: Interactions with some putative transmitters, J. Pharm. Pharmacol. 25:582–584.PubMedCrossRefGoogle Scholar
  55. Landis, S. C., and Bloom, F. E., 1974, Fluorescence and electron microscopic analysis of catecholamine-containing fibers in mutant mouse cerebellum, Anat. Rec. 178:398.Google Scholar
  56. Lenn, N. J., 1967, Localization of uptake of tritiated norepinephrine by rat brain in vivo and in vitro using electron microscopy, Am. J. Anat. 120:377–390.CrossRefGoogle Scholar
  57. Loizu, L. A., 1969, Projections of the nucleus locus coeruleus in the albino rat, Brain Res. 15:563–567.CrossRefGoogle Scholar
  58. Malmfors, T., and Thoenen, H. (eds.), 1971, 6-Hydroxydopamine and Catecholamine Neurons, North-Holland, Amsterdam.Google Scholar
  59. Nakai, Y., and Takori, S., 1972, Influence of catecholamine on lateral geniculate neuron activity, Proc. Vth Int. Congr. Pharmacol., San Francisco, p. 983.Google Scholar
  60. Nelson, C. N., Hoffer, B. J., Chu, N.-S., and Bloom, F. E., 1973, Cytochemical and pharmacological studies on polysensory neurons in the primate frontal cortex, Brain Res. 62:115–133.PubMedCrossRefGoogle Scholar
  61. Nicoll, R. A., and Barker, J. L., 1971, The pharmacology of recurrent inhibition in the supraoptic neurosecretory system, Brain Res. 35:501–516.PubMedCrossRefGoogle Scholar
  62. Olson, L., and Fuxe, K., 1971, On the projections from the locus coeruleus norepinephrine neurons, Brain Res. 28:165–168.PubMedCrossRefGoogle Scholar
  63. Phillis, J. W., Lake, N., and Yarborough, G. G., 1973, Calcium mediation of the inhibitory effects of biogenic amines on cerebral cortical neurons, Brain Res. 53:465–469.PubMedCrossRefGoogle Scholar
  64. Pickel, V. M., Krebs, W. H., and Bloom, F. E., 1973, Proliferation of norepinephrine-containing axons in rat cerebellar cortex after penuncle lesions, Brain Res. 59:169–179.PubMedCrossRefGoogle Scholar
  65. Pickel, V. M., Segal, M., and Bloom, F. E., 1974a, A radioautographic study of the efferent pathways of the nucleus locus coeruleus, J. Comp. Neurol. 155:15–42.PubMedCrossRefGoogle Scholar
  66. Pickel, V. M., Segal, M., and Bloom, F. E., 1974b, Axonal proliferation following lesions of cerebellar peduncles: A combined fluoresence microscopic and radioautographic study, J. Comp. Neurol. 155:43–60.PubMedCrossRefGoogle Scholar
  67. Richardson, K. C., 1966, Electron microscopic identification of autonomic nerve fibers, Nature 210:756.PubMedCrossRefGoogle Scholar
  68. Rozear, M., DeGroof, R., and Somjen, G., 1971, Effects of microiontophoretic administration of divalent metal ions on neurones of the central nervous system of cats, J. Pharmacol. Exp. Ther. 176:109–118.PubMedGoogle Scholar
  69. Salmoiraghi, G. C., and Stefanis, C., 1971, Central synapses and suspected transmitters, Int. Rev. Neurobiol. 10:1–30.CrossRefGoogle Scholar
  70. Sasa, S., and Takori, S., 1972, Relationship between norepinephrine and regulation mechanisms on the trigeminal nucleus from the locus coeruleus, Proc. Vth Int. Congr. Pharmacol., San Francisco, p. 1202.Google Scholar
  71. Satinsky, D., 1967, Iontophoretic studies on the lateral geniculate nucleus of the cat, Int. J. Neuropharmacol. 6:387–395.PubMedCrossRefGoogle Scholar
  72. Segal, M., and Bloom, F. E., 1974a, The action of norepinephrine in the rat hippocampus. I. Iontophoretic studies, Brain Res. 72:79–97.PubMedCrossRefGoogle Scholar
  73. Segal, M., and Bloom, F. E., 1974b, The action of norepinephrine in the rat hippocampus. II. Activation of the input pathway, Brain Res. 72:99–114.PubMedCrossRefGoogle Scholar
  74. Segal, M., Pickel, V. M., and Bloom, F. E., 1973, The projection of the nucleus locus coeruleus, an autoradiographic study, Life Sci. 13:817–821.PubMedCrossRefGoogle Scholar
  75. Shoemaker, W. J., Ballentine, L. T., Siggins, G. R., Hoffer, B. J., Henriksen, S. J., and Bloom, F. E., 1975, Characteristics of the release of cyclic adenosine 3′,5′-monophosphate from micropipets by microiontophoresis, J. Cyclic Nucleotide Res. 1:97–106.PubMedGoogle Scholar
  76. Siggins, G. R., Hoffer, B. J., and Bloom, F. E., 1969, Cyclic adenosine 3′,5′-monophosphate: possible mediator for the response of cerebellar purkinje cells to microelectrophoresis of norepinephrine, Science 165:1018–1020.PubMedCrossRefGoogle Scholar
  77. Siggins, G. R., Hoffer, B. J., and Bloom, F. E., 1971a, Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. III. Evidence for mediation of norepinephrine effects by cyclic 3′, 5′-adenosine monophosphate, Brain Res. 25:535–553.PubMedCrossRefGoogle Scholar
  78. Siggins, G. R., Hoffer, B. J., and Bloom, F. E., 1971b, Prostaglandin-norepinephrine interactions in brain: Microelectrophoretic and histochemical correlates, Ann. N.Y. Acad. Sci. 180:302–323.PubMedCrossRefGoogle Scholar
  79. Siggins, G. R., Oliver, A. P., Hoffer, B. J., and Bloom, F. E., 1971c, Cyclic adenosine monophosphate and norepinephrine: Effects on transmembrane properties of cerebellar Purkinje cells, Science 171:192.PubMedCrossRefGoogle Scholar
  80. Siggins, G. R., Hoffer, B. J., Oliver, A. P., and Bloom, F. E., 1971a, Activation of a central noradrenergic projection to cerebellum, Nature 233:481–483.PubMedCrossRefGoogle Scholar
  81. Siggins, G. R., Battenberg, E. F., Hoffer, B. J., Bloom, F. E., and Steiner, A. L., 1973, Noradrenergic stimulation of cyclic adenosine monophosphate in rat Purkinje neurons: An immuno-cytochemical study, Science 179:585–588.PubMedCrossRefGoogle Scholar
  82. Siggins, G. R., Hoffer, B. J., and Ungerstedt, U., 1974, Electrophysiological evidence for involvent of cyclic adenosine monophosphate in dopamine responses of caudate neurons, Life Sci. 15:779–792.PubMedCrossRefGoogle Scholar
  83. Skolnick, P., Huang, M., Daly, J., and Hoffer, B. J., 1973, Accumulation of adenosine 3′-5′ monophosphate in incubated slices from discrete regions of squirrel monkey cortex: Effect of norepinephrine, serotonin and adenosine, J. Neurochem. 21:237–240.PubMedCrossRefGoogle Scholar
  84. Snyder, S. H., 1974, in: Madness and the Brain, pp. 215–237, McGraw-Hill, New York.Google Scholar
  85. Stone, T. W., 1973, Pharmacology of pyramidal tract cells in the cerebral cortex, Naunyn-Schmiedebergs. Arch. Pharmakol. 278:333–346.CrossRefGoogle Scholar
  86. Sutherland, E. W., Robison, G. A., and Butcher, R., 1968, Some aspects of the biological role of adenosine 3′-5′ monophosphate Circulation 37:279–306.CrossRefGoogle Scholar
  87. Tebēcis, A., 1970, Effects of monoamines and amino acids on medial geniculate neurons of the cat, Neuropharmacology 9:381–390.PubMedCrossRefGoogle Scholar
  88. Tsien, R. W., 1973, Adrenaline-like effects of intracellular iontophoresis of cyclic AMP in cardiac Purkinje fibers, Nature New Biol. 245:120–122.PubMedCrossRefGoogle Scholar
  89. Ungerstedt, U., 1971, Stereotaxic mapping of monoamine pathways in rat brain, Acta Physiol. Scand. Suppl. 367:1–48.PubMedGoogle Scholar
  90. Veda, T., Maino, H., and Greengard, P., 1973, Regulation of endogenous phosphorylation of specific proteins in synaptic membrane fractions from rat brain by adenosine 3′-5′ monophosphate, J. Biol. Chem. 248:8295–8305.Google Scholar
  91. von Baumgarten, R., Bloom, F. E., Oliver, A. P., and Salmoiraghi, G. C., 1963, Response of individual nerve cells to microelectrophoretically administered chemical substances, Pfluegers Arch. Ges. Physiol. 277:125–140.Google Scholar
  92. Weight, F. F., and Salmoiraghi, G. C., 1966, Responses of spinal cord interneurons to acetylcholine, norepinephrine and serotonin administered by microelectrophoresis, J. Pharmacol. Exp. Ther. 153:420–427.PubMedGoogle Scholar
  93. Weight, F. F., and Salmoiraghi, G. C., 1967, Motoneuron depression by norepinephrine, Nature 213:1229–1230.CrossRefGoogle Scholar
  94. Woodward, D. J., Hoffer, B. J., Siggins, G. R., and Bloom, F. E., 1971, The ontogenetic development of synaptic junctions, synaptic activation and responsiveness to neurotransmitter substances in rat cerebellar Purkinje cells, Brain Res. 34:73–79.PubMedCrossRefGoogle Scholar
  95. Woodward, D. J., Hoffer, B. J., and Altman, J., 1974, The effect on neonatal X-irradiation on the pattern and pharmacology of rat cerebellar Purkinje cells, J. Neurobiol. 5:283–304.PubMedCrossRefGoogle Scholar
  96. Yamamoto, C., 1967, Pharmacologic studies of norepinephrine, acetylcholine and related compounds on neurons in Deiter’s nucleus and the cerebellum, J. Pharmacol. Exp. Ther. 156:39–47.PubMedGoogle Scholar
  97. Yarborough, G. G., Lake, N., and Phillis, J. W., 1974, Calcium antagonism and its effect on the inhibitory actions of biogenic amines on cerebral cortical neurones, Brain Res. 67:77–88.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Floyd E. Bloom
    • 1
  1. 1.Laboratory of Neuropharmacology, Division of Special Mental ResearchSt. Elizabeths HospitalUSA

Personalised recommendations