Skip to main content

Amine Receptors in CNS. I. Norepinephrine

  • Chapter
Biogenic Amine Receptors

Part of the book series: Handbook of Psychopharmacology ((SIBN,volume 6))

Abstract

Among the neurochemicals considered to be candidates for synaptic transmitter function within the central nervous system, the conceptual link to psychopharmacological actions has been particularly strong for norepinephrine (NE). Basic research in psychiatry has concentrated on the changes in brain monoamine metabolism produced by psychoactive drugs (see Snyder, 1974) to develop catecholamine theories of mental diseases. In such a psychopharmacological model, NE is presumed to be a central synaptic transmitter, but the actual functional controls (i.e., excitation or inhibition) exerted by such synapses, their exact cellular location, and their mechanism of action have not been known. This chapter will focus on the methods by which the central receptors for NE may be characterized as to location, function, and pharmacological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian, G. K., and Bloom, F. E., 1967, Electron microscopic localization of H3-norepinephrine in rat brain by electron microscopic autoradiography: Effect of drugs, J. Pharmacol. 156:407–416.

    Google Scholar 

  • Anderson, E. G., Haas, H. L., and Hosli, L., 1973, Comparison of noradrenaline and histamine with cyclic AMP on brain stem neurones, Brain Res. 49:471–475.

    Article  PubMed  Google Scholar 

  • Avanzino, G. L., Bradley, P. B., and Wolstencroft, J. H., 1966, Pharmacological properties of neurones of the paramedian reticular nucleus, Experientia 22:410.

    Article  PubMed  Google Scholar 

  • Barker, J. L., Crayton, J. C. and Nicoll, R. A., 1971, Supraoptic neurosecretory cells: Adrenergic and cholinergic sensitivity, Science 171:208–210.

    Article  PubMed  Google Scholar 

  • Berridge, M. J., and Prince, W. T., 1972, Effects of serotonin and cyclic AMP on insect salivary gland, Advan. Cyclic Nucleotide Res. 1:137–147.

    Google Scholar 

  • Biscoe, T. J., and Curtis, D. R., 1966, Noradrenaline and inhibition of Renshaw cells, Science 151:1231–1232.

    Article  Google Scholar 

  • Blackstad, T. W., Fuxe, K., and Hokfelt, T., 1967, Noradrenaline nerve terminals in the hippocampal region of the rat and guinea pig, Z. Zellforsch. 78:463–473.

    Article  PubMed  Google Scholar 

  • Bloom, F. E., 1968, Electrophysiological pharmacology of single nerve cells, in: PsychopharmacologyA Ten Year Progress Report (D. H. Efron, ed.), pp. 355–373, Government Printing Office, Washington, D.C.

    Google Scholar 

  • Bloom, F. E., 1971, Fine structural changes in rat brain after intracisternal injection of 6-hydroxydopamine, in: 6-Hydroxydopamine and Catecholamine Neurons (H. Thoenen, ed.), pp. 135–150, North-Holland, Amsterdam.

    Google Scholar 

  • Bloom, F. E., 1973, Ultrastructural identification of catecholamine-containing central synaptic terminals,J. Histochem. Cytochem. 21:333–348.

    Article  PubMed  Google Scholar 

  • Bloom, F. E., 1974, To spritz or not to spritz: The doubtful value of aimless iontophoresis, Life Sci. 14:1819–1834.

    Article  PubMed  Google Scholar 

  • Bloom, F. E., and Costa, E., 1971, The effects of drugs on serotonergic nerve terminals, Advan. Cytopharmacol. 379–395.

    Google Scholar 

  • Bloom, F. E., and Hoffer, B. J., 1974, Norepinephrine as a central synaptic transmitter, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), Pergamon Press, New York.

    Google Scholar 

  • Bloom, F. E., Oliver, A. P., and Salmoiraghi, G. C., 1963, The responsiveness of individual hypothalamic neurons to microelectrophoretically administered endogenous amines. Int. J. Neuropharmacol. 2:181–193.

    Article  Google Scholar 

  • Bloom, F. E., Costa, E., and Salmoiraghi, G. C., 1964, Analaysis of individual rabbit olfactory bulb neuron response to microelectrophoresis of acetylcholine, norepinephrine and serotonin synergists and antagonists, J. Pharmacol. 146:16–23.

    Google Scholar 

  • Bloom, F. E., Hoffer, B. J., and Siggins, G. R., 1971, Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. I. Localization of the fibers and their synapses, Brain Res. 25:501–521.

    Article  PubMed  Google Scholar 

  • Bloom, F. E., Hoffer, B. J., Siggins, G. R., Barker, J. L., and Nicoll, R. A., 1972a, Effects of serotonin on central neurons: Microiontophoretic administration, Fed. Proc. 31:97–106.

    PubMed  Google Scholar 

  • Bloom, F. E., Hoffer, B. J., and Siggins, G. R., 1972b, Norepinephrine mediated synapses: A model system for neuropsychopharmacology, Biol. Psychiat. 4:157–177.

    PubMed  Google Scholar 

  • Boakes, R. J., Cand, J. M., and Wolstencroft, J. H., 1968, Agonistic and antagonistic effects of alpha methylnoradrenaline at central receptors, Brain Res. 11:450–452.

    Article  PubMed  Google Scholar 

  • Boakes, R. J., Bradley, P. B., Brookes, N., Candy, J. M., and Wolstencroft, J. H., 1971, Actions of noradrenaline, other sympathomimetic amines and antagonists on neurones in the brainstem of the cat, Brit. J. Pharmacol. 41:262–271.

    Article  Google Scholar 

  • Bradley, P. B. and Wolstencroft, J. H., 1962 Excitation and inhibition of brainstem neurones by noradrenaline and acetylcholine, Nature 196:840–841.

    Article  PubMed  Google Scholar 

  • Bradley, P. B., Wolstencroft, J. H., Hosli, L., and Avanzino, G. L., 1966, Neuronal basis for the central action of chlorpromazine, Nature 212:1425–1427.

    Article  PubMed  Google Scholar 

  • Brown, J. H., and Makman, M. H., 1973, Dopamine sensitive adenylate cyclase of retina, J. Neurochem. 21:477–479.

    Article  PubMed  Google Scholar 

  • Chu, N.-S., and Bloom, F. E., 1974, The catecholamine-containing neurons in the cat dorso-lateral pontine tegmentum: Distribution of the cell bodies and some axonal projections, Brain Res. 66:1–21.

    Article  Google Scholar 

  • Couch, J., 1970, Responses of neurons in the raphe nuclei to serotonin, norepinephrine and acetylcholine and their correlation with an excitatory synaptic input, Brain Res. 19:137–150.

    Article  PubMed  Google Scholar 

  • Cowan, W. M., Gottlieb, D. I., Hendrickson, A. E., Price, J. L., and Woolsey, T. A., 1972, The autoradiographic demonstration of axonal connections in the central nervous system, Brain Res. 37:21–35.

    Article  PubMed  Google Scholar 

  • Curtis, D. R., and Davis, R., 1962, Pharmacological studies upon neurons of the lateral geniculate nucleus of the cat, Brit. J. Pharmacol. 18:217–246.

    PubMed  Google Scholar 

  • Curtis, D. R., Phillis, J. W., and Watkins, J. C., 1961, Cholinergic and non-cholinergic transmission in the mammalian spinal cord, J. Physiol. 158:296–323.

    PubMed  Google Scholar 

  • Dahlström, A., Fuxe, K., Olson, L., and Ungerstedt, U., 1965, On the distribution and possible function of monoamine nerve terminals in the olfactory bulb of the rabbit, Life Sci. 4:2071–2076.

    Article  PubMed  Google Scholar 

  • Engberg, I., and Marshall, K. C., 1971, Mechanism of noradrenaline hyperpolarization in spinal cord motoneurons of the cat, Acta Physiol. Scand. 83:142–144.

    Article  PubMed  Google Scholar 

  • Feltz, P., and deChamplain, J., 1972, Enhanced sensitivity of caudate neurons to microion-tophoretic injections of dopamine in 6-hydroxydopamine-treated cats, Brain Res. 43:601–605.

    Article  PubMed  Google Scholar 

  • Frederickson, R., Jordan, L., and Phillis, J. W., 1972, The action of noradrenalin on cortical neurons, Brain Res. 35:556–560.

    Article  Google Scholar 

  • Godfraind, J. M., and Pumain, R., 1971, Cyclic adenosine monophosphate and norepinephrine: Lack of effect on Purkinje cells in rat cerebellar cortex, Science 174:1257.

    Article  PubMed  Google Scholar 

  • Haksar, A., and Peron, F. G., 1972, The interaction between cyclic AMP and Ca++ in the effects of ACTH on adrenal cortical cells, Biochem. Biophys. Res. Commun. 47:445–450.

    Article  PubMed  Google Scholar 

  • Hoffer, B. J., Siggins, G. R., and Bloom, F. E., 1969, Prostaglandins E1 and E2 antagonize norepinephrine effects on cerebellar Purkinje cells: Microelectrophoretic study, Science 166:1418–1420.

    Article  PubMed  Google Scholar 

  • Hoffer, B. J., Siggins, G. R., and Bloom, F. E., 1971a, Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis, Brain Res. 25:523–534.

    Article  PubMed  Google Scholar 

  • Hoffer, B. J., Siggins, G. R., Woodward, D. J., and Bloom, F. E., 1971b, Spontaneous discharge of Purkinje neurons after destruction of catecholamine-containing afferents by 6-hydroxydopamine, Brain Res. 30:425–430.

    Article  PubMed  Google Scholar 

  • Hoffer, B. J., Siggins, G. R., Oliver, A. P., and Bloom, F. E., 1972, Cyclic adenosine monophosphate mediated adrenergic synapses to cerebellar Purkinje cells, Advan. Cyclic Nucleotide Res. 1:411–423.

    Google Scholar 

  • Hoffer, B. J., Siggins, G. R., Oliver, A. P., and Bloom, F. E., 1973, Activation of the pathway from locus coeruleus to rat cerebellar Purkinje neurons: Pharmacological evidence of noradrenergic central inhibition, J. Pharmacol. Exp. Ther. 184:553–569.

    PubMed  Google Scholar 

  • Hökfelt, T., 1967, Electron microscopic studies on brain slices from regions rich in catecholamines, Acta Physiol. Scand. 69:119–121.

    Article  PubMed  Google Scholar 

  • Hökfelt, T., and Fuxe, K., 1969, Cerebellar monoamine nerve terminals, a new type of afferent fiber to the cortex cerebelli, Exp. Brain Res. 9:63–75.

    Article  PubMed  Google Scholar 

  • Hori, T., and Nakayama, 1973, Effects of biogenic amines on central thermo-responsive neurons in the rabbit, J. Physiol. 232:71–85.

    PubMed  Google Scholar 

  • Kebabian, J. W., Petzold, G., and Greengard, P., 1972, Dopamine sensitive adenylate cyclase in caudate nucleus of rat brain and its similarities to the dopamine receptor, Proc. Natl. Acad. Sci. 69:2145–2149.

    Article  PubMed  Google Scholar 

  • Kukovetz, W., and Poch, G., 1970, Inhibition of cyclic 3′,5′-nucleotide-phosphodiesterase as a possible mode of action of papaverine and similarly acting drugs, Naunyn Schmiedeberg’s Arch. Pharmakol.. 267:189–194.

    Article  Google Scholar 

  • Iversen, L. L., and Schon, F., 1973, The use of autoradiographic techniques for the identification and mapping of transmitter specific neurons in CNS, in: New Concepts in Transmitter Regulation (A. Mandell, ed.), Plenum Press, New York.

    Google Scholar 

  • Johnson, E. S., Roberts, M. H. T., Sobieszek, A., and Straughan, D. W., 1969a, Noradrenaline sensitive cells in cat cerebral cortex, Int. J. Neuropharmacol. 8:549–557.

    Article  PubMed  Google Scholar 

  • Johnson, E. S., Roberts, M. H. T., and Straughan, D. W., 1969b, The responses of cortical neurones to monoamines under differing anesthetic conditions, J. Physiol. 203:261–275.

    PubMed  Google Scholar 

  • Krebs, H., and Bindra, D., 1971, Noradrenaline and “chemical coding” of hypothalamic neurons, Nature 229:179–180.

    Google Scholar 

  • Krnjević, K., and Phillis, J. W., 1963a, Iontophoretic studies of neurons in mammalian cerebral cortex, J. Physiol. 165:274–304.

    PubMed  Google Scholar 

  • Krnjević, K., and Phillis, J. W., 1963b, Actions of certain amines on cerebral cortical neurons, Brit. J. Pharmacol. 20:471–490.

    PubMed  Google Scholar 

  • Kukovetz, W. R., and Poch, G., 1970, Inhibition of cyclic 3′-5′-nucleotide phosphodiesterase as a possible mode of action of papaverine and similarly acting drugs, Naunyn-Schmiedebergs Arch. Pharmakol. 267:189–194.

    Article  PubMed  Google Scholar 

  • Lake, N., and Jordan, L. M., 1974, Failure to confirm norepinephrine as second messenger for norepinephrine in rat cerebellum, Science 183:663–664.

    Article  PubMed  Google Scholar 

  • Lake, N., Jordan, L. M., and Phillis, J. W., 1973a, Evidence against cyclic AMP mediation of noradrenaline depression of cerebral cortical neurons, Brain Res. 60:411–421.

    Article  PubMed  Google Scholar 

  • Lake, N., Yarborough, G. G., and Phillis, J. W., 1973b, Effects of ethanol on cerebral cortical neurons: Interactions with some putative transmitters, J. Pharm. Pharmacol. 25:582–584.

    Article  PubMed  Google Scholar 

  • Landis, S. C., and Bloom, F. E., 1974, Fluorescence and electron microscopic analysis of catecholamine-containing fibers in mutant mouse cerebellum, Anat. Rec. 178:398.

    Google Scholar 

  • Lenn, N. J., 1967, Localization of uptake of tritiated norepinephrine by rat brain in vivo and in vitro using electron microscopy, Am. J. Anat. 120:377–390.

    Article  Google Scholar 

  • Loizu, L. A., 1969, Projections of the nucleus locus coeruleus in the albino rat, Brain Res. 15:563–567.

    Article  Google Scholar 

  • Malmfors, T., and Thoenen, H. (eds.), 1971, 6-Hydroxydopamine and Catecholamine Neurons, North-Holland, Amsterdam.

    Google Scholar 

  • Nakai, Y., and Takori, S., 1972, Influence of catecholamine on lateral geniculate neuron activity, Proc. Vth Int. Congr. Pharmacol., San Francisco, p. 983.

    Google Scholar 

  • Nelson, C. N., Hoffer, B. J., Chu, N.-S., and Bloom, F. E., 1973, Cytochemical and pharmacological studies on polysensory neurons in the primate frontal cortex, Brain Res. 62:115–133.

    Article  PubMed  Google Scholar 

  • Nicoll, R. A., and Barker, J. L., 1971, The pharmacology of recurrent inhibition in the supraoptic neurosecretory system, Brain Res. 35:501–516.

    Article  PubMed  Google Scholar 

  • Olson, L., and Fuxe, K., 1971, On the projections from the locus coeruleus norepinephrine neurons, Brain Res. 28:165–168.

    Article  PubMed  Google Scholar 

  • Phillis, J. W., Lake, N., and Yarborough, G. G., 1973, Calcium mediation of the inhibitory effects of biogenic amines on cerebral cortical neurons, Brain Res. 53:465–469.

    Article  PubMed  Google Scholar 

  • Pickel, V. M., Krebs, W. H., and Bloom, F. E., 1973, Proliferation of norepinephrine-containing axons in rat cerebellar cortex after penuncle lesions, Brain Res. 59:169–179.

    Article  PubMed  Google Scholar 

  • Pickel, V. M., Segal, M., and Bloom, F. E., 1974a, A radioautographic study of the efferent pathways of the nucleus locus coeruleus, J. Comp. Neurol. 155:15–42.

    Article  PubMed  Google Scholar 

  • Pickel, V. M., Segal, M., and Bloom, F. E., 1974b, Axonal proliferation following lesions of cerebellar peduncles: A combined fluoresence microscopic and radioautographic study, J. Comp. Neurol. 155:43–60.

    Article  PubMed  Google Scholar 

  • Richardson, K. C., 1966, Electron microscopic identification of autonomic nerve fibers, Nature 210:756.

    Article  PubMed  Google Scholar 

  • Rozear, M., DeGroof, R., and Somjen, G., 1971, Effects of microiontophoretic administration of divalent metal ions on neurones of the central nervous system of cats, J. Pharmacol. Exp. Ther. 176:109–118.

    PubMed  Google Scholar 

  • Salmoiraghi, G. C., and Stefanis, C., 1971, Central synapses and suspected transmitters, Int. Rev. Neurobiol. 10:1–30.

    Article  Google Scholar 

  • Sasa, S., and Takori, S., 1972, Relationship between norepinephrine and regulation mechanisms on the trigeminal nucleus from the locus coeruleus, Proc. Vth Int. Congr. Pharmacol., San Francisco, p. 1202.

    Google Scholar 

  • Satinsky, D., 1967, Iontophoretic studies on the lateral geniculate nucleus of the cat, Int. J. Neuropharmacol. 6:387–395.

    Article  PubMed  Google Scholar 

  • Segal, M., and Bloom, F. E., 1974a, The action of norepinephrine in the rat hippocampus. I. Iontophoretic studies, Brain Res. 72:79–97.

    Article  PubMed  Google Scholar 

  • Segal, M., and Bloom, F. E., 1974b, The action of norepinephrine in the rat hippocampus. II. Activation of the input pathway, Brain Res. 72:99–114.

    Article  PubMed  Google Scholar 

  • Segal, M., Pickel, V. M., and Bloom, F. E., 1973, The projection of the nucleus locus coeruleus, an autoradiographic study, Life Sci. 13:817–821.

    Article  PubMed  Google Scholar 

  • Shoemaker, W. J., Ballentine, L. T., Siggins, G. R., Hoffer, B. J., Henriksen, S. J., and Bloom, F. E., 1975, Characteristics of the release of cyclic adenosine 3′,5′-monophosphate from micropipets by microiontophoresis, J. Cyclic Nucleotide Res. 1:97–106.

    PubMed  Google Scholar 

  • Siggins, G. R., Hoffer, B. J., and Bloom, F. E., 1969, Cyclic adenosine 3′,5′-monophosphate: possible mediator for the response of cerebellar purkinje cells to microelectrophoresis of norepinephrine, Science 165:1018–1020.

    Article  PubMed  Google Scholar 

  • Siggins, G. R., Hoffer, B. J., and Bloom, F. E., 1971a, Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. III. Evidence for mediation of norepinephrine effects by cyclic 3′, 5′-adenosine monophosphate, Brain Res. 25:535–553.

    Article  PubMed  Google Scholar 

  • Siggins, G. R., Hoffer, B. J., and Bloom, F. E., 1971b, Prostaglandin-norepinephrine interactions in brain: Microelectrophoretic and histochemical correlates, Ann. N.Y. Acad. Sci. 180:302–323.

    Article  PubMed  Google Scholar 

  • Siggins, G. R., Oliver, A. P., Hoffer, B. J., and Bloom, F. E., 1971c, Cyclic adenosine monophosphate and norepinephrine: Effects on transmembrane properties of cerebellar Purkinje cells, Science 171:192.

    Article  PubMed  Google Scholar 

  • Siggins, G. R., Hoffer, B. J., Oliver, A. P., and Bloom, F. E., 1971a, Activation of a central noradrenergic projection to cerebellum, Nature 233:481–483.

    Article  PubMed  Google Scholar 

  • Siggins, G. R., Battenberg, E. F., Hoffer, B. J., Bloom, F. E., and Steiner, A. L., 1973, Noradrenergic stimulation of cyclic adenosine monophosphate in rat Purkinje neurons: An immuno-cytochemical study, Science 179:585–588.

    Article  PubMed  Google Scholar 

  • Siggins, G. R., Hoffer, B. J., and Ungerstedt, U., 1974, Electrophysiological evidence for involvent of cyclic adenosine monophosphate in dopamine responses of caudate neurons, Life Sci. 15:779–792.

    Article  PubMed  Google Scholar 

  • Skolnick, P., Huang, M., Daly, J., and Hoffer, B. J., 1973, Accumulation of adenosine 3′-5′ monophosphate in incubated slices from discrete regions of squirrel monkey cortex: Effect of norepinephrine, serotonin and adenosine, J. Neurochem. 21:237–240.

    Article  PubMed  Google Scholar 

  • Snyder, S. H., 1974, in: Madness and the Brain, pp. 215–237, McGraw-Hill, New York.

    Google Scholar 

  • Stone, T. W., 1973, Pharmacology of pyramidal tract cells in the cerebral cortex, Naunyn-Schmiedebergs. Arch. Pharmakol. 278:333–346.

    Article  Google Scholar 

  • Sutherland, E. W., Robison, G. A., and Butcher, R., 1968, Some aspects of the biological role of adenosine 3′-5′ monophosphate Circulation 37:279–306.

    Article  Google Scholar 

  • Tebēcis, A., 1970, Effects of monoamines and amino acids on medial geniculate neurons of the cat, Neuropharmacology 9:381–390.

    Article  PubMed  Google Scholar 

  • Tsien, R. W., 1973, Adrenaline-like effects of intracellular iontophoresis of cyclic AMP in cardiac Purkinje fibers, Nature New Biol. 245:120–122.

    Article  PubMed  Google Scholar 

  • Ungerstedt, U., 1971, Stereotaxic mapping of monoamine pathways in rat brain, Acta Physiol. Scand. Suppl. 367:1–48.

    PubMed  Google Scholar 

  • Veda, T., Maino, H., and Greengard, P., 1973, Regulation of endogenous phosphorylation of specific proteins in synaptic membrane fractions from rat brain by adenosine 3′-5′ monophosphate, J. Biol. Chem. 248:8295–8305.

    Google Scholar 

  • von Baumgarten, R., Bloom, F. E., Oliver, A. P., and Salmoiraghi, G. C., 1963, Response of individual nerve cells to microelectrophoretically administered chemical substances, Pfluegers Arch. Ges. Physiol. 277:125–140.

    Google Scholar 

  • Weight, F. F., and Salmoiraghi, G. C., 1966, Responses of spinal cord interneurons to acetylcholine, norepinephrine and serotonin administered by microelectrophoresis, J. Pharmacol. Exp. Ther. 153:420–427.

    PubMed  Google Scholar 

  • Weight, F. F., and Salmoiraghi, G. C., 1967, Motoneuron depression by norepinephrine, Nature 213:1229–1230.

    Article  Google Scholar 

  • Woodward, D. J., Hoffer, B. J., Siggins, G. R., and Bloom, F. E., 1971, The ontogenetic development of synaptic junctions, synaptic activation and responsiveness to neurotransmitter substances in rat cerebellar Purkinje cells, Brain Res. 34:73–79.

    Article  PubMed  Google Scholar 

  • Woodward, D. J., Hoffer, B. J., and Altman, J., 1974, The effect on neonatal X-irradiation on the pattern and pharmacology of rat cerebellar Purkinje cells, J. Neurobiol. 5:283–304.

    Article  PubMed  Google Scholar 

  • Yamamoto, C., 1967, Pharmacologic studies of norepinephrine, acetylcholine and related compounds on neurons in Deiter’s nucleus and the cerebellum, J. Pharmacol. Exp. Ther. 156:39–47.

    PubMed  Google Scholar 

  • Yarborough, G. G., Lake, N., and Phillis, J. W., 1974, Calcium antagonism and its effect on the inhibitory actions of biogenic amines on cerebral cortical neurones, Brain Res. 67:77–88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Bloom, F.E. (1975). Amine Receptors in CNS. I. Norepinephrine. In: Iversen, L.L., Iversen, S.D., Snyder, S.H. (eds) Biogenic Amine Receptors. Handbook of Psychopharmacology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8514-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8514-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8516-5

  • Online ISBN: 978-1-4684-8514-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics