Advertisement

Neurochemistry of Aging

  • Thaddeus Samorajski
  • J. Mark Ordy
Part of the Advances in Behavioral Biology book series (ABBI, volume 3)

Abstract

Stimulated in part by rapid and parallel advances in biochemistry and neurobiology, the field of neurochemistry has been characterized by a remarkable expansion in the past decade. Despite this rapid advance, however, research on the neurochemistry of aging in man and other primates has been sparse and inconclusive. This paucity of research can be attributed in part to the long life span of man and the primates and in part to the broad, diversified, and exploratory focus on such biological mechanisms of aging as the extracellular components collagen and elastin, the search for age changes in particular cell types, tissue, or organs as a whole, and more recently the neuromolecular emphasis on age differences in a variety of intracellular organelles.

Keywords

Mouse Brain Lysosomal Enzyme Brain Weight Lysosomal Enzyme Activity Neuronal Aging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrew, W. 1964. Changes in the nucleus with advancing age of the organism. In Advances in Gerontological Research. B.L. Strehler(ed.). New York: Academic Press, vol. 1, p. 87.Google Scholar
  2. Birren, J.E. 1959. Sensation, perception and modification of behavior in relation to the process of aging. In The Process of Aging in the Nervous System. J.E. Birren, H.A. Imus, and W.F. Windle (eds.). Springfield, Ill.: Charles C Thomas, p. 143.Google Scholar
  3. Birren, J.E. 1965. Age changes in speed of behavior: Its central nature and physiological correlates. In Behavior, Aging, and the Nervous System. A.T. Welford and J.E. Birren (eds.). Springfield, Ill.: Charles C Thomas, p. 191.Google Scholar
  4. Björkerud, S. 1964. Isolated lipofuscin granules: A survey of a new field. In Advances in Gerontological Research. B.L. Strehler(ed.). New York: Academic Press, vol. 1, p. 257.Google Scholar
  5. Bond, V.P.; Fliedner, T.M.; and Archambeau, J.O. 1965. Mammalian Radiation Lethality: A Disturbance in Cellular Kinetics. New York: Academic Press, p. 276.Google Scholar
  6. Bondareff, W. 1959. Morphology of the aging nervous system. In Handbook of Aging and the Individual. J.E. Birren (ed.). Chicago: The University of Chicago Press, p. 136.Google Scholar
  7. Brody, H. 1955. Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. J. Comp. Neurol. 102:511.PubMedCrossRefGoogle Scholar
  8. Bürger, M. 1957. Die chemische Biomorphose des menschlichen Gehirns. Abhandlungen der Sachsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-naturwissenschaftliche Klasse 45:1.Google Scholar
  9. Curtis, H.J. 1963. Biological mechanisms underlying the aging process. Science 49:626.Google Scholar
  10. Dalton, A.J. 1961. Golgi apparatus and secretion granules. In The Cell: Biochemistry, Physiology, Morphology. J. Brachet and A.E. Mirsky (eds.). New York: Academic Press, p. 603.Google Scholar
  11. Dalton, M.M.; Hommes, O.R.; and Leblond, C.P. 1968. Correlation of glial proliferation with age in the mouse brain. J. Comp. Neurol. 134:397.PubMedCrossRefGoogle Scholar
  12. Dixit, B.N., and Buckley, J.P. 1969. Brain 5-hydroxytryptamine and anterior pituitary activation by stress. Neuroendocrinology 4:32.PubMedCrossRefGoogle Scholar
  13. Donahue, S.; Zeman, W.; and Watanabe, I. 1966. Electron microscopic observations in Batten’s disease. Proceedings Third International Symposium on The Cerebral Sphingolipidoses. Reprinted from Inborn Disorders of Sphingolipid Metabolism. New York: Pergamon Press, p. 3.Google Scholar
  14. Elens, A., and Wattiaux, R. 1969. Age-correlated changes in lysosomal enzyme activities: An index of ageing? Exp. Geront. 4:131.CrossRefGoogle Scholar
  15. Földi, M.; Zoltán, O. T.; and Gyori, I. 1970. Über die Wirkung von Kavain und Magnesium-Orotat auf die funktionellen Störungen bei der experimentellen lymphogenen Enzephalopathie. I. Mitteilung. Z. Geront. 3:97.Google Scholar
  16. Friede, R.L., and Samorajski, T. 1968. Myelin formation in the sciatic nerve of the rat. J. Neuropath. Exp. Neurol 27:546.PubMedCrossRefGoogle Scholar
  17. Gatenby, J.B. 1953. The Golgi apparatus of the living sympathetic ganglion cells of the mouse, photographed by phase contrast microscopy. J. Roy. Micr. Soc. 73:61.PubMedCrossRefGoogle Scholar
  18. Geller, E.; Yuwiler, A.; and Zolman, J.F. 1965. Effects of environmental complexity on constituents of brain and liver. J. Neurochem. 12:949.PubMedCrossRefGoogle Scholar
  19. Gordon, P. 1971. Molecular approaches to the drug enhancement of deteriorated functioning in the aged. In Advances in Gerontological Research. B.L. Strehler (ed.). New York: Academic Press, vol. 3, p. 199.Google Scholar
  20. Harman, D. 1971. Free radical theory of aging: Effect of the amount and degree of unsaturation of dietary fat on mortality rate. J. Geront. 26:451.PubMedGoogle Scholar
  21. Hendley, D.D.; Mildvan, A.S.; Reporter, M.C.; and Strehler, B.L. 1963. The properties of isolated human cardiac age pigment. II. Chemical and enzymatic properties. J. Geront. 18:250.PubMedGoogle Scholar
  22. Hendley, D.D., and Strehler, B.L. 1965. Enzymic activities of lipofuscin age pigments: Comparative histochemical and biochemical studies. Biochim. Biophys. Acta 99:406.PubMedGoogle Scholar
  23. Himwich, H.E. 1959. Biochemistry of the nervous system in relation to the process of aging. In The Process of Aging in the Nervous System. J.E. Birren, H.A. Imus, and W.F. Windle (eds.). Springfield: Charles C Thomas, p. 101.Google Scholar
  24. Himwich, W.A., and Himwich, H.E. 1959. Neurochemistry of Aging. In Handbook of Aging and the Individual. J.E. Birren (ed.). Chicago: The University of Chicago Press, p. 187.Google Scholar
  25. Horrocks, L.A. 1968. Composition of mouse brain during development. J. Neurochem. 15:483.PubMedCrossRefGoogle Scholar
  26. Horrocks, L.A. 1969. Metabolism of ethanolamine phosphoglycerides of mouse brain myelin and microsomes. J. Neurochem. 16:13.PubMedCrossRefGoogle Scholar
  27. Horrocks, L.A. Content, composition and metabolism of mammalian and avian lipids that contain ether groups. In The Ether Bond in Lipids. F. Snyder (ed.). New York: Academic Press (in press).Google Scholar
  28. Huemer, R.P.; Bickert, C; Lee, K.D.; and Reeves, A.E. 1971. Mitochondrial studies in senescent mice. I. Turnover of brain mitochondrial lipids. Exp. Geront. 6:259.CrossRefGoogle Scholar
  29. Krech, D.; Rosenzweig, M.R.; and Bennett, E.L. 1966. Environmental impoverishment, social isolation and changes in brain chemistry and anatomy. Physiol. Behav. 1:99.CrossRefGoogle Scholar
  30. Kristensson, K., and Sourander, P. 1966. Occurrence of lipofuscin in inherited metabolic disorders affecting the nervous system. J. Neurol. Neurosurg. Psychiat. 29:113.CrossRefGoogle Scholar
  31. MacKinnon, P.C.B.; Simpson, R.A.; and MacLennan, C. 1969. In vivo and in vitro techniques used in the study of RNA synthesis in the brains of rats and mice at various ages from birth to senility. J. Anat. 104:351.PubMedGoogle Scholar
  32. McCay, C.M. 1952. Chemical aspects of ageing and the effect of diet upon ageing. In Cowdry’s Problems of Ageing. A.I. Lansing (ed.). Baltimore: Williams and Wilkins, p. 139.Google Scholar
  33. Miyagishi, T.; Takahata, N.; and Iizuka, R. 1967. Electron microscopic studies on the lipo-pigments in the cerebral cortex nerve cells of senile and vitamin E deficient rats. Acta Neuropath. 9:7.PubMedCrossRefGoogle Scholar
  34. Nikaido, T.; Austin, J.; Rinehart, R.; Trueb, L.; Hutchison, J.; Stukenbrok, H.; and Miles, B. 1971. Studies in ageing of the brain. I. Isolation and preliminary characterization of Alzheimer plaques and cores. Arch. Neurol. 25:198.PubMedCrossRefGoogle Scholar
  35. Norton, W.T.; Poduslo, S.E.; and Suzuki, K. 1967. Rat brain myelin: Compositional changes during development. Abstract, Int. Soc. Neurochem., Strasbourg, p. 161.Google Scholar
  36. Norton, W.T., and Poduslo, S.E. 1970. Neuronal soma and whole neuroglia of rat brain: A new isolation technique. Science 167:1144.PubMedCrossRefGoogle Scholar
  37. Oeriu, S. 1964. Proteins in development and senescence. In Advances in Gerontological Research. B.L. Strehler (ed.). New York: Academic Press, vol. 1, p. 23.Google Scholar
  38. Ordy, J.M.; Samorajski, T.; Zeman, W.; and Curtis, H.J. 1967. Interaction effects of environmental stress and deuteron irradiation of the brain on mortality and longevity of C57BL/10 mice. Proc. Soc. Exp. Biol. Med. 126:184.Google Scholar
  39. Ordy, J.M.; Samorajski, T.; Hershberger, T.J.; and Curtis, H.J. 1971. Life-shortening by deuteron irradiation of the brain in C57BL/10 female mice. J. Geront. 26:194.PubMedGoogle Scholar
  40. Palade, G.E. 1955. Studies on the endoplasmic reticulum. II. Dispositions in cells in situ. J. Biophys. Biochem. Cytol. 1:567.PubMedCrossRefGoogle Scholar
  41. Palay, S.L., and Palade, G.E. 1955. The fine structure of neurons. J. Biophys. Biochem. Cytol. 1:69.PubMedCrossRefGoogle Scholar
  42. Pallis, C.A.; Duckett, S.; and Pearse, A.G.E. 1967. Diffuse lipofuscinosis of the central nervous system. Neurology 17:381.PubMedGoogle Scholar
  43. Price, G.B.; Modak, S.P.; and Makinodan, T. 1971. Age-associated changes in the DNA of mouse tissue. Science 171:917.PubMedCrossRefGoogle Scholar
  44. Raine, CS.; Poduslo, S.E.; and Norton, W.T. 1971. The ultrastructure of purified preparations of neurons and glial cells. Brain Res. 27:11.PubMedCrossRefGoogle Scholar
  45. Reichet, W., and Garcia-Bunuel, R. 1970. Pathologic findings in progeria: Myocardial fibrosis and lipofuscin pigment. Amer. J. Clin. Path. 53:243.Google Scholar
  46. Retzlaff, E., and Fontaine, J. 1965. Functional and structural changes in motor neurons with age. In Behavior, Aging, and the Nervous System. A.T. Welford and J.E. Birren (eds.). Springfield, Ill.: Charles C Thomas, p. 340.Google Scholar
  47. Ring, G.C.; Bosch, M.; and Lo, CS. 1970. Effects of exercise on growth, resting metabolism and body composition of Fischer rats. Proc. Soc. Exp. Biol. Med. 133:1162.PubMedGoogle Scholar
  48. Rouser, G., and Yamamoto, A. 1969. Lipids. In Handbook of Neurochemistry. A. Lajtha (ed.). New York: Plenum Press, vol. 1, p. 121.Google Scholar
  49. Samorajski, T., and Friede, R.L. 1968. A quantitative electron microscopic study of myelination in the pyramidal tract of rat. J. Comp. Neurol. 134:323.PubMedCrossRefGoogle Scholar
  50. Samorajski, T.; Ordy, J.M.; and Rady Reimer, P. 1968. Lipofuscin pigment accumulation in the nervous system of aging mice. Anat. Rec. 160:555.PubMedCrossRefGoogle Scholar
  51. Samorajski, T.; Ordy, J.M.; Zeman, W.; and Curtis, H.J. 1970. Brain irradiation and aging. Interdiscipl. Topics Gerontol. 7:72.Google Scholar
  52. Samorajski, T.; Friede, R.L.; and Ordy, J.M. 1971. Age differences in the ultrastructure of axons in the pyramidal tract of the mouse. J. Geront. 26:542.PubMedGoogle Scholar
  53. Samorajski, T.; Rolsten, C.; and Ordy, J.M. 1971. Changes in behavior, brain, and neuroendocrine chemistry with age and stress in C57BL/10 male mice. J. Geront. 26:168.PubMedGoogle Scholar
  54. Silberberg, M., and Silberberg, R. 1955. Diet and life span. Physiol. Rev. 35:347.PubMedGoogle Scholar
  55. Smookler, H.H., and Buckley, J.P. 1969. Relationship between brain catecholamine synthesis, pituitary adrenal function and the production of hypertension during prolonged exposure to environmental stress. Int. J. Neuropharmacol. 8:33.PubMedCrossRefGoogle Scholar
  56. Strehler, B.L. 1960. Dynamic theories of aging. In Aging... Some Social and Biological Aspects. N.W. Shock (ed.). Washington, D.C.: American Association for Advancement of Science, p. 273.Google Scholar
  57. Strehler, B.L. 1962. Aging of subcellular components. In Time, Cells, and Aging. B.L. Strehler (ed.) New York: Academic Press, p. 158.Google Scholar
  58. Strehler, B.L., and Mildvan, A.S. 1962. Studies on the chemical properties of lipofuscin age pigment. In Biological Aspects of Ageing. N.W. Shock (ed.). New York: Columbia University Press, p. 174.Google Scholar
  59. Strehler, B.L. 1966. Code degeneracy and the aging process: A molecular genetic theory of aging. In Proceeding 7th International Congress of Gerontology. Vienna: Viennese Medical Academy.Google Scholar
  60. Sulkin, N.M., and Srivanij, P. 1960. The experimental production of senile pigments in the nerve cells of young rats. J. Geront. 15:2.PubMedGoogle Scholar
  61. Sun, A., and Samorajski, T. 1970. Effects of ethanol on the activity of adenosine triphosphatase and acetylcholinesterase in synaptosomes isolated from guinea-pig brain. J. Neurochem. 17:1365.PubMedCrossRefGoogle Scholar
  62. Tauchi, H., and Sato, T. 1968. Age changes in size and number of mitochondria of human hepatic cells. J. Geront. 23:454.PubMedGoogle Scholar
  63. Terry, R. 1963. The fine structure of neurofibrillary tangles in Alzheimer’s disease. J. Neurol. Exp. Neuropath. 32:629.CrossRefGoogle Scholar
  64. Terry, R.; Gonatas, N.; and Weiss, M. 1964. Ultrastructural studies in Alzheimer’s presenile dementia. Amer. J. Path. 44:269.PubMedGoogle Scholar
  65. Tilney, R., and Rosett, J. 1931. The value of brain lipoids as an index of brain development. Bull. Neurol Inst. (New York) 1:28.Google Scholar
  66. Umana, R., and Brekke, J.H. 1969. Changes in protease and ribonuclease activities in brain and liver during the life-span of the rat. Growth 33:157.PubMedGoogle Scholar
  67. Varkonyi, T.; Domokos, H.; Maurer, M.; Zoltan, Ö.T.; Csillik, B.; and Földi, M. 1970. Die Wirkung von D,L-Kavain und Magnesium-Orotat auf die feinstrukturellen neuropathologischen Veränderungen der experimentellen lymphogenen Enzephalopathie. Z. Geront. 3:254.Google Scholar
  68. Wisniewski, T.; Terry, R.; and Hirano, A. 1970. Neurofibrillary pathology. J. Neuropath. Exp. Neurol. 29:163.PubMedCrossRefGoogle Scholar
  69. Wulff, V.J.; Samis, H.V. Jr.; and Falzone, J.A. Jr. 1967. The metabolism of ribonucleic acid in young and old rodents. In Advances in Gerontological Research. B.L. Strehler (ed.). New York: Academic Press, vol. 2, p. 37.Google Scholar
  70. Zeman, W., and Alpert, M. 1963. On the nature of the “stored” lipid substances in juvenile amaurotic idiocy. Ann. Histochim. 8:255.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Thaddeus Samorajski
    • 1
  • J. Mark Ordy
    • 2
  1. 1.Laboratory of NeurochemistryCleveland Psychiatric InstituteClevelandUSA
  2. 2.Department of PsychologyNorthern Illinois UniversityDeKalbUSA

Personalised recommendations