Calcification in Plants

  • Howard J. Arnott
  • Frederick G. E. Pautard


Raphides of calcium oxalate were among the first objects to be observed under the optical microscope. Leeuwenhoek described the raphides which occur in Arum in a letter to Mr. H. Oldenberg written August 14, 1675. One of the first signs of life in Precambrian rocks were the calcareous filamentous algae of thin limestone reefs which are scarcely different from their counterparts in a modern coralline community. Yet in spite of the fact that deposits of calcium salts in plants are abundant, diverse, and complex and the mineral matter, chemically and physically, indistinguishable from the same substances in animals, there seems to be a lack of studies on the metabolism and structure of plants, comparable to those of bone and shell. A great deal of information is available from the literature as to the location and appearance of calcium deposits in plants, but surprisingly little can be found about the mechanism of calcification, and still less about the ultrastructural features of the event.


Calcium Carbonate Oxalic Acid Calcium Phosphate Eichhornia Crassipes Calcium Oxalate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhromeiko, A. I. 1936. Über die Ausscheidung mineralischer Stoffe durch Pflanzenwurzeln. Z. Pflanzenernähr. Dueng. Bodenk., 42: 156–186.Google Scholar
  2. Alexopoulos, C. J. 1952. Introductory Mycology. New York, John Wiley & Sons, Inc.Google Scholar
  3. Arens, K. 1934. Die kutikuläre Exkretion des Laubblattes. Jahrb. Wiss. Bot., 80: 248–300.Google Scholar
  4. Arnott, H. J. 1962. The seed, germination and seedling of Yucca. Univ. Calif. Pub. Bot., 35: 11–64.Google Scholar
  5. Arnott, H. J. 1966. Studies of calcification in plants. In Third European Symposium on Calcified Tissues. Fleisch, H., Blackwood, H. J. J., and Owen, M., eds. Berlin, Springer-Verlag.Google Scholar
  6. Arnott, H. J., and F. G. E. Pautard. 1965. Mineralization in plants. Amer. J. Bot., 52: 613.Google Scholar
  7. Arnott, H. J., H. Steinfink, and F. G. E. Pautard. 1965. Structure of calcium oxalate monohydrate. Nature (London), 208: 1197–1198.Google Scholar
  8. Audus, L. J. 1962. The mechanism of the perception of gravity by plants. Symp. Soc. Exp. Biol., 16: 197–226.Google Scholar
  9. Baas-Becking, L. G. M., and E. W. Galliher. 1931. Wall structure and mineralization in coralline algae. J. Phys. Chem., 35: 467–479.Google Scholar
  10. Bailey, I. W., and C. G. Nast. 1948. Morphology and relationship of lllicium, Schisandra and Kadsura. I. Stem and leaf. J. Arnold Arbor., 29: 77–89.Google Scholar
  11. Bannister, F. A., and M. H. Hey. 1936. Report on some crystalline components of the Weddell Sea deposits. Disc. Rep., 13: 60–69.Google Scholar
  12. Basset, C. A. L., and T. P. Ruedi. 1966. Transformation of fibrous tissue to bone in vivo. Nature (London), 209: 988–989.Google Scholar
  13. Bell, C. W. 1962. Calcium movement and deposition in the stem of the bean plant. Ph.D. Thesis. Washington State University, Pullman, Washington.Google Scholar
  14. Bell, C. W., and O. Biddulph. 1963. Translocation of calcium: Exchange versus mass flow. Plant Physiol., 38: 610–614.PubMedGoogle Scholar
  15. Bennet-Clark, T. A. 1956. Salt accumulation and the mode of action of auxin: A preliminary hypothesis. In The Chemistry and Mode of Action of Plant Growth Substances. Wain, R. L., and Wightman, F., eds. London, Butterworths, pp. 284–291.Google Scholar
  16. Biddulph, O., F. S. Nakayama, and R. Cory. 1961. Transpiration stream and ascension of calcium. Plant Physiol., 36: 429–436.PubMedGoogle Scholar
  17. Biebl, R. 1940. Weitere Untersuchungen über die Wirkung der α-Strahlen auf die Pflanzenzelle. Protoplasma, 35: 187–236.Google Scholar
  18. Bollard, E. G., and G. W. Butler. 1966. Mineral nutrition of plants. Ann. Rev. Plant Physiol., 17: 77–112.Google Scholar
  19. Brandenberger, E., and H. R. Schinz. 1944. X-ray investigations of calcification in plants. Ber. Schweiz. Bot. Ges., 54: 255–266.Google Scholar
  20. Brierley, G., E. Murer, E. Bachmann, and D. E. Green. 1963. Studies on ion transport. II. The accumulation of inorganic phosphate and magnesium ions by heart mitochondria. J. Biol. Chem., 238: 3482–3489.PubMedGoogle Scholar
  21. Brouwer, R. 1954. The regulating influence of transpiration and suction tension on the water and salt uptake by the roots of intact Vicia faba plants. Acta Bot. Neer., 3: 264–312.Google Scholar
  22. Brumagen, D. M., and A. J. Hiatt. 1966. The relationship of oxalic acid to the translocation and utilization of calcium in Nicotiana tabacum. Plant and Soil, 24: 239–249.Google Scholar
  23. Brunzema, D. 1928. Die Entwickelung der Kalziumoxalatzellen mit besonderer Berücksichtigung der offizineilen Pflanzen. Arch. Pharm. (Weinheim), 266: 86.Google Scholar
  24. Bukovac, M. J., and S. H. Wittwer. 1957. Absorption and mobility of foliar applied nutrients. Plant Physiol., 32: 428–435.PubMedGoogle Scholar
  25. Carlier, A., and K. Büffel. 1955. Polysaccharide changes in the cell walls of water absorbing potato tuber tissue in relation to auxin action. Acta Bot. Neer., 4: 551–564.Google Scholar
  26. Chartschenko, W. 1933. Verschiedene Typen des mechaniscshen Gewebes und der kristallinischen Ausbildungen als systematische Merkmale der Gattung Allium. Beih. Bot. Zbl., 50 (2): 183–206.Google Scholar
  27. Chave, K. E. 1952. A solid solution between calcite and dolomite. I. Geol., 60: 190–192.Google Scholar
  28. Chave, K. E. 1954. Aspects of the biogeochemistry of magnesium. I. Calcareous marine organisms. I. Geol., 62: 266–283.Google Scholar
  29. Clarkson, D. T. 1965. Calcium uptake by calcicole and calcifuge species in the genus Agrostis L. J. Ecol., 53: 427–435.Google Scholar
  30. Cleland, R. 1960. Effect of auxin upon loss of calcium from cell walls. Plant Physiol., 35: 581–584.PubMedGoogle Scholar
  31. Cocco, G., and C. Sabelli. 1962. Affinamento della struttura della whewellite con elaboratore elettronico. Atti Soc. Toscana Sci. Nat. (Pisa). Proc. Verbali Mem./Ser. A., 69: 289–298.Google Scholar
  32. Conard, H. S. 1905. The waterlilies. A monograph of the genus Nymphaea. Washington, Carnegie Institution of Washington.Google Scholar
  33. Curtis, L. C. 1943. Deleterious effects of guttated fluids on foliage. Amer. J. Bot., 30: 778–781.Google Scholar
  34. Curtis, O. F. 1935. The Translocation of Solutes in Plants: A Critical Consideration of Evidence Bearing Upon Solute Movement. New York, McGraw-Hill Book Company.Google Scholar
  35. Czapek, F. 1921. Biochemie der Pflanzen. Jena, Gustav Fisher.Google Scholar
  36. Dalbro, S. 1955. Leaching of apple foliage by rain. Proc. 14th Int. Congr. Hort. Scheveningen, Holland, 1: 770–778.Google Scholar
  37. Dangeard, P. A. C. 1947. Cytologie Végétale et Cytologie Générale. Paris, Lechevalier.Google Scholar
  38. De Bary, A. 1958. Untersuchungen über die Familie der Conjugaten. Leipzig, 91 pp.Google Scholar
  39. Dormer, K. J. 1961. The crystals in the ovaries of certain Compositae. Ann. Bot., 25: 141–154.Google Scholar
  40. Duncan, R. E. 1959. Orchids and cytology. In The Orchids. Withner, C. L., ed. New York, The Ronald Press Company, pp. 189–260.Google Scholar
  41. Ebert, F. 1909. Kieselkörper bei Ginkgo, Drusen in der Fruchtepidermis von Nelumbo. Beit. 2. Kennt. Seltener Manna-Sorten. Diss. Zurich. Cited by Netolitzky, 1929.Google Scholar
  42. Elenken, A. A., and A. N. Danilow. 1916. Recherches cytologiques sur les cristaux et les grains de sécrétion dans les cellules de Symploca muscorum (AP) Gom et quelques autres Cyanophycées. Bull. Jard. Bot. Pierre le Grand, 16; see also Arch. Protistenk., 47:319. (1924) Abstract.Google Scholar
  43. Engel, H. 1939. Das Verhalten der Blätter bei Benetzung mit Wasser. Jahrb. Wiss. Bot., 88: 816–861.Google Scholar
  44. Ferrell, W. K., and F. D. Johnson. 1956. Mobility of calcium-45 after injection into western white pine. Science, 124: 364–365.PubMedGoogle Scholar
  45. Fischer, A. 1884. Über die Vorkommen von Gypskrystallen bei Desmidiaceen. Jahrb. Wiss. Bot., 14: 133.Google Scholar
  46. Foster, A. S. 1956a. Plant idioblasts: Remarkable examples of cell specialization. Protoplasma, 46: 184–193.Google Scholar
  47. Foster, A. S. 1956b. Practical Plant Anatomy. New York, D. Van Nostrand Co., Inc.Google Scholar
  48. Foster, J. W., L. E. McDaniel, H. B. Woodruff, and J. L. Stokes. 1945. Microbiological aspects of penicillin. V. Conidiospore formation in submerged cultures of Penicillium notatum. J. Bact., 50: 365–368.Google Scholar
  49. Frey, A. 1926. Etude sur les vacuoles ä cristaux des Closteres. Rev. Gen. Bot., 38: 273–286.Google Scholar
  50. Frey, A. 1927. Calciumoxalat-Monohydrat und Trihydrat. In Linsbauer, K., ed. Handbuch der Pflanzenanatomie. Berlin, Gebrüder Borntraeger, Vol. 3, pp. 81–118.Google Scholar
  51. Frey-Wyssling, A. 1930. Vergleich zwischen der Auscheidung von Kieselsäure und Kalziumsalzen in der Pflanze. Ber. Deut. Bot. Ges., 48: 184–191.Google Scholar
  52. Frey-Wyssling, A. 1935. Die Stoffausscheidung der höheren Pflanzen. Berlin, Springer-Verlag.Google Scholar
  53. Friesner, R. C. 1940. An observation of the effectiveness of root pressure in the ascent of sap. Butler. Univ. Bot. Stud., 4: 226–227.Google Scholar
  54. Fritsch, F. E. 1935. Structure and Reproduction of the Algae. Cambridge University Press, Vol. 2.Google Scholar
  55. Gilbert, S. G., C. B. Shear, and C. M. Gropp. 1951. The effects of the form of nitrogen and the amount of base supply on the organic acids of tung leaves. Plant Physiol., 26: 750–756.PubMedGoogle Scholar
  56. Ginzbfrg, B. Z. 1961. Evidence for a protein gel structure cross-linked by metal cations in the intercellular cement of plant tissue. J. Exp. Bot., 12: 85–107.Google Scholar
  57. Haas, P., T. G. Hill, and W. K. H. Karstens. 1935. The metabolism of calcareous algae. II. The seasonal variation in certain metabolic products of Corallina squamata Ellis. Ann. Bot., 49: 609–619.Google Scholar
  58. Haberlandt, G. 1914. Physiological Plant Anatomy. London, MacMillan & Co., Ltd.Google Scholar
  59. Hammarsten, G. 1939. On calcium oxalate and its solubility in the presence of inorganic salts with special reference to the occurrence of oxaluria. C. R. Trav. Lab. Carlsberg, 17: 11.Google Scholar
  60. Heath, O. V. S., and J. E. Clark. 1956. Chelating agents as plant growth substances. Nature (London), 177: 1118–1121.Google Scholar
  61. Hewitt, E. J. 1963. Essential nutrient elements for plants. Plant Physiol., 3: 155–172.Google Scholar
  62. Hodges, T. K., and J. B. Hanson. 1965. Calcium accumulation by maize mitochondria. Plant Physiol., 40: 101–109.PubMedGoogle Scholar
  63. Honegger, R. 1952. The polyhydrates of calcium oxalate. Vierteljahresschr. Naturforsch. Ges. Zurich, 97: 44.Google Scholar
  64. Howe, M. A. 1932. The geologic importance of the lime-secreting algae. U.S. Geol. Surv. Profess. Papers, 170E: 57–65.Google Scholar
  65. Hurelpy, G. 1942. Sur les vacuoles des cellules Ä raphides. C. R. Soc. Biol. (Paris), 215: 31–33.Google Scholar
  66. Hylmö, B. 1953. Transpiration and ion absorption. Physiol. Plantarum, 6: 333–405.Google Scholar
  67. Ingham, G. 1950. Effect of materials absorbed from the atmosphere in maintaining soil fertility. Soil Sci., 70: 205–212.Google Scholar
  68. Ivanoff, S. S. 1938. Onion “blight.” Texas Agr. Exp. Sta. 51st Ann. Rep., 260–261.Google Scholar
  69. Ivanoff, S. S. 1941. Chemical deposits on foliage of citrus and other plants and their possible relation to chlorosis and yield. Texas Agr. Exp. Sta. 54th Ann. Rep., 181–182.Google Scholar
  70. Ivanoff, S. S. 1963. Guttation injuries of plants. Bot. Rev., 29: 202–229.Google Scholar
  71. Jacard, P., and A. Frey. 1928. Kristallhabitus und Ausbildungsformer des Ca-oxalats als Artmerkmal. Ein Beitrag zur systematischen Anatomie der Gattung Allium. Vierteljahresschr. Naturforsch. Ges. Zurich, 73: 127.Google Scholar
  72. Jahn, E. 1928. Myxomycetenstudien. 12. Das System der Myxomyceten. Ber. Deut. Bot. Ges., 46: 8–17.Google Scholar
  73. James, D. B. 1962. Factors affecting the growth of Molinia caerulea on a calcareous soil. J. Ecol., 50: 521–527.Google Scholar
  74. Jeffries, R. L., and A. J. Willis. 1964. Studies on the calcicole-calcifuge habit. I. Methods of analysis of soil and plant tissues and some results of investigations on four species. J. Ecol., 52: 121–138.Google Scholar
  75. Johnson, J. J. 1961. Limestone-building algae and algal limestones. Golden, Colo., Colorado School of Mines, Department of Publications.Google Scholar
  76. Jovet-Ast, S. 1942. Recherches sur la Anonacees d’Indochine. Mem. Mus. Nation. D’Hist. Nat. (Paris), 16: 3.Google Scholar
  77. Joy, K. W. 1964. Accumulation of oxalate in tissues of sugar beet, and the effect of nitrogen supply. Ann. Bot., 28: 689–701.Google Scholar
  78. Katz, R., and M. R. Querry. 1965. Calcium content of wheat kernel sections by critical microradiography. Cereal Chem., 42: 187–198.Google Scholar
  79. Kessler, B., Z. W. Moscicki, and R. Bak. 1961. The effects of decapitation and growth regulators on the movement of calcium in apricot trees. In Plant Growth Regulation. Kline, R. M., ed. Ames, la., Iowa State University Press.Google Scholar
  80. Kitchen, J. W., and E. E. Burns. 1965. The effect of maturity on the oxalate content of spinach (Spinacea oleracea L.). Food Sci., 30: 589–593.Google Scholar
  81. Kitchen, J. W., and B. A. Perry. 1964. Calcium oxalate content of spinach (Spinacea oleracea L.). Proc. Amer. Soc. Hort. Sci., 84: 441–445.Google Scholar
  82. Klasens, H. A., W. G. Perdok, and P. Z. Terpstra. 1937. Crystallography of strontium oxalate. Z. Krist., 96: 227.Google Scholar
  83. Kohl, F. G. 1889. Anatomisch-physiologische Untersuchung der Kalksalze und Kieselsäure in den Pflanzen, Marburg.Google Scholar
  84. Kopetzky-Rechtperg, O. 1949. Zellbau und Zelleinschlüsse bei Conjugaten, besonders Des- midiales. Protoplasma, 39: 106–112.Google Scholar
  85. Koster, J. T. 1939. Notes on Javanese Calcicole Cyanophyceae. Blumea (Leiden), 3: 243–247.Google Scholar
  86. Kreusch, W. 1933. Über Entwicklungsgeschichte und Vorkommen des Kalziumoxalates in Solanaceen. Beih. Bot. ZbL, 50: 410–431.Google Scholar
  87. Küster, E. 1942. Beiträge zur Kenntnis der Rosanoff’schen Kristalle und verwandter Gebilde. Flora, 136: 101–116.Google Scholar
  88. Küster, E. 1956. Die Pflanzenzelle. Höfler, K., and G. Küster-Winkelmann, Eds. Jena, Gustav Fischer.Google Scholar
  89. Laties, G. 1959. Active transport of salt into plant tissue. Ann. Rev. Plant Physiol., 10: 87–112.Google Scholar
  90. Läuchli, A. 1967. Nachweis von Calcium-Strontiumablagerungen im Fruchtstiel von Visum sativum mit der Röntgen-Mikrosonde. Planta, 73: 221–227.Google Scholar
  91. Läuchli, A., and H. Schwander. 1966. X-ray microanalyzer study on the localization of minerals in native plant tissue sections. Experientia, 22: 503–505.Google Scholar
  92. Leblond, M. E. 1928. Formation des vacuoles accessoires chez le Closterium lunula Nitzch. C. R. Soc, Biol. (Paris), 186:1, 311–1, 314.Google Scholar
  93. Lefevre, M., and P. Bourrelly. 1938. Sur la valeur systématique des productions verruqueuses de la membrane chez les Closterium. Bull. Soc. Bot. France, 85: 686–690.Google Scholar
  94. Lehninger, A. L., C. S. Rossi, and J. W. Greenawalt. 1963. Respiration-dependent accumulation of inorganic phosphate and Ca++ by rat liver mitochondria. Biochem. Biophys. Res. Commun., 10: 444–448.PubMedGoogle Scholar
  95. Lepeschkin, W. W. 1923. Über aktive und passive Wasserdrüsen und Wasserspalten. Ber. Deut. Bot. Ges., 41: 298–300.Google Scholar
  96. Lewin, J. C. 1962. Calcification. In Physiology and Biochemistry of Algae. Lewin, R. A., ed. New York, Academic Press, Inc.Google Scholar
  97. Lowenstam, H. A. 1954. Factors affecting the aragonite-calcite ratios in carbonate-secreting marine organisms. J. Geol., 62: 284–322.Google Scholar
  98. Lowenstam, H. A. 1955. Aragonite needles secreted by algae and some sedimentary implications. J. Sediment. Petrol., 25: 270–272.Google Scholar
  99. Malpighi, M. 1687. Opera Omnia.Google Scholar
  100. Mandels, M., and E. T. Reese. 1957. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J. Bact., 73: 269–278.PubMedGoogle Scholar
  101. Mangenot, G. 1932. Sur le pigment et le calcaire chez Fuligo septica Gmel. C. R. Soc. Biol. (Paris), 111: 936.Google Scholar
  102. Mangenot, G. 1934. Recherches cytologiques sur les plasmodes de quelques Myxomycètes. Rev. Cytol., 1: 19–67.Google Scholar
  103. Mann, C. E. T., and T. Wallace. 1925. The effect of leaching with cold water on the foliage of apple. J. Pomol. Hort. Sci., 4: 146–161.Google Scholar
  104. Marinos, N. G. 1962. Studies on submicroscopic aspects of mineral deficiency. I. Calcium deficiency in the shoot apex of barley. Amer. J. Bot., 49: 834–841.Google Scholar
  105. Marloth, R. 1887. Zur Bedeutung der Salz abscheidenden Drüsen der Tamariscineen. Ber. Deut. Bot. Ges., 5: 319–324.Google Scholar
  106. Mazia, D. 1938. The binding of Ca, Sr and Ba by Elodea protoplasm. J. Cell Comp. Physiol., 11: 193–203.Google Scholar
  107. McLean, F. C. 1958. The ultrastructure and function of bone. Science, 127: 451–456.PubMedGoogle Scholar
  108. Mecklenberg, R. A., and H. B. Tukey, Jr. 1964. Influence of foliar leaching on root uptake and translocation of calcium-45 to the stems and foliage of Phaseolus vulgaris. Plant Physiol., 39: 533–536.Google Scholar
  109. Metcalfe, C. R., and L. Chalk. 1950. Anatomy of the Dicotyledons. Oxford, Clarendon Press, Vol. 1, 2.Google Scholar
  110. Meyer, A. 1920. Morphologische und physiologische Analyse der Zelle der Pflanzen und Tiere. Teil I, Jena, Gustav Fisher.Google Scholar
  111. Molisch, H. 1881. Über die Ablagerung von kohlensaurem Kalk in Stämme dikotyler Holzgewächse. Sitz. ber. Akad. Wiss. Wien, Math-naturw., 84: 7.Google Scholar
  112. Molisch, H. 1926. Pflanzenbiologie in Japan auf Grundeigener Beobachtungen. Jena.Google Scholar
  113. Mollenhauer, H. H., and D. A. Larson. 1966. Developmental changes in raphide-forming cells of Vanilla planifolia and Monstera deliciosa. J. Ultrastruct. Res. 16: 55–70.PubMedGoogle Scholar
  114. Müller, W. 1923. Über die Abhängigkeit der Kalkoxalatbildung in der Pflanze von den Ernährungsbedingungen. Beih. Bot. Zbl., 39: 321–351.Google Scholar
  115. Nadson, G., and B. Rochline-Gleichgerwicht. 1928. Apparition des cristaux d’oxalate de calcium dans les cellules végétales sous l’influence de la radiation ultra-violette. C. R. Soc. Biol. (Paris), 98: 363.Google Scholar
  116. Nägeli, C. 1863. Sphaerokrystalle in Acetabularia. Bot. Mitteil. v. Nägeli, Vol. 1.Google Scholar
  117. Netolitzky, F. 1929. Die Kieselkörper: Die Kalksalze als Zellinhaltskörper. In Handbuch der Pflanzenanatomie. Linsbauer, K., ed. Berlin, Gebrüder Borntraegger, Vol. 3, pp. 1–80.Google Scholar
  118. Niethammer, A. 1931. Mikroscopie und Mikrochemie einiger Kalkoxalatausscheidungen in der Pflanzenzelle. Planta Med., 12: 53–59.Google Scholar
  119. Nilsson, H. 1928. Om rafidcellerna i boroten hos Veratrum album och deras utveckling. Farm. Revy Stockholm, p. 5.Google Scholar
  120. O’Kelley, J. C., and W. R. Herndon. 1959. Effect of strontium replacement for calcium on production of motile cells in Protosiphon. Science, 130: 718.PubMedGoogle Scholar
  121. Olsen, C. 1939. Absorption of calcium and formation of oxalic acid in higher green plants. C. R. Lab. Carlsberg. Sér. chim., 23: 101–124.Google Scholar
  122. Ordin, L., R. Cleland, and J. Bonner. 1955. Influence of auxin on cell-wall metabolism. Proc. Nat. Acad. Sci. U.S.A., 41: 1023–1029.Google Scholar
  123. Ordin, L., R. Cleland, and J. Bonner. 1957. Methyl esterification of cell wall constituents under the influence of auxin. Plant Physiol., 32: 216–220.PubMedGoogle Scholar
  124. Parry, D. W., and F. Smithson. 1958. Techniques for studying opaline silica in grass leaves. Ann. Bot., 22: 543–549.Google Scholar
  125. Parry, D. W., and F. Smithson. 1964. Types of opaline silica depositions in the leaves of British grasses. Ann. Bot., 28: 169–185.Google Scholar
  126. Paupardin, C. 1964. Recherches préliminaires sur le comportement de l’oxalate de calcium dans des tissues végétaux culturés in vitro. Rev. Cytol. Biol. Végétales, 27: 253–257.Google Scholar
  127. Pavilinova, E. 1926. Physiological significance of guttation. Bull. Inst. Rech. Biol. Sta. Biol. Univ. Perm, 4: 471–478.Google Scholar
  128. Penzig, O. 1883. Sull’esistenza di apparecchi illuminatori nell’interno d’alcune piante. Atti. Soc. Nat. Modena, 3: 1Google Scholar
  129. Perrin, A. 1967. Valeur trophique du liquide de guttation: constituants organique et minéraux important. Ann. Sci. Nat. Bot. Ser. 12, 8: 357–368.Google Scholar
  130. Pfeffer, W. 1872. Untersuchungen über die Proteinkörner und die Bedeutung des Asparagins beim Keimen der Samen. Jahrb. Wiss. Bot., 8: 427.Google Scholar
  131. Pfeiffer, H. 1926. Über die Wasserstoflionenkonzentration (H’) als Determinationsfaktor physiologischer Gewebegeschehen in der sekundären Rinde der Pflanzen. New Phytologist, 24: 65–98.Google Scholar
  132. Philipsborn, H. Von. 1952. Über Calciumoxalat in Pflanzenzellen. Protoplasma, 41: 415–424.Google Scholar
  133. Pireyre, N. 1953. Étude préliminaire sur la calcification et la décalcification des cystolithes. C. R. Soc. Biol. (Paris), 236: 1595–1596.Google Scholar
  134. Pobeguin, T. 1940. Sur la formation de tartrate de calcium dans le mucilage des tiges et des feuilles de Zebrina pendula, Schnizi. Bull. Soc. Bot. France, 87: 363.Google Scholar
  135. Pobeguin, T. 1943. Les oxalates de calcium chez quelques Angiospermes: Étude physico-chimique-formation-destin. Ann. Sei. Nat. Bot., Ser. 11, 4: 1–93.Google Scholar
  136. Pobeguin, T. 1951. Précipitation du carbonate de calcium chez quelques végétaux. Existence in vivo et in vitro du calcaire amorphe. Ann. Sei. Nat. Bot., Ser. 11, 12: 219–225.Google Scholar
  137. Pobeguin, T. 1954a. Contribution a l’étude des carbonates de calcium. Précipitation du calcaire par les végétaux. Comparaison avec le monde animal. Ann. Sei. Nat. Bot., Ser. 11, 15: 29–109.Google Scholar
  138. Pobeguin, T. 1954b. Microstructure d’une algue calcaire: Dactylopora (Dasycladacée tertiaire): Remarques sur les organismes aragonitiques et sur leur fossilization. Ann. Sci. Bot., 15: 325–336.Google Scholar
  139. Prankerd, T. L. 1920. Statocytes of the wheat haulm. Bot. Gaz., 70: 148–152.Google Scholar
  140. Prát, S. 1929. Biologische Reaktionen auf die Dichte der Gallerten. Kolloid Z., 47: 36–38.Google Scholar
  141. Prát, S., and J. Hámácková. 1946. The analysis of calcareous marine algae. Studia Bot. Cechoslovaca (Prague), 7: 112–126.Google Scholar
  142. Rao, J. S., and D. D. Sundararaj. 1951. Stinging hairs in Tragia cannabina L. f. J. Indian. Bot. Soc., 30: 88–91.Google Scholar
  143. Rasmussen, G. K., and P. F. Smith. 1961. Effects of calcium, potassium and magnesium on oxalic, malic and citric acid content of Valencia orange leaf tissue. Plant Physiol., 36: 99–101.PubMedGoogle Scholar
  144. Reuther, W., and P. F. Smith. 1954. Leaf analysis in citrus. In Fruit Nutrition. Childers, N. F., ed. New Jersey, Somerset Press, pp. 254–294.Google Scholar
  145. Revelle, R., and R. Fairbridge. 1957. Carbonates and carbon dioxide. In Treatise on Marine Ecology and Paleoecology. Hedgepeth, J. W., ed. Geol. Soc. Amer. Mem., Vol. 1, 67: 239–296.Google Scholar
  146. Robyns, W. 1928. L’origine et les constituants protoplasmatiques des cellules à raphides du Hyacinthus orientalis. La Cellule, 38: 177–198.Google Scholar
  147. Rorison, I. H. 1960. Some experimental aspects of the calcicole-calcifuge problem. I. The effects of competition and mineral nutrition upon seedling growth in the field. J. Ecol., 48: 585–599.Google Scholar
  148. Rosanoff, S. 1865. Über die Krystalldrusen im Marke von Kerria japonica D.C. und Ricinus communis. Bot. Z., 23: 329–330.Google Scholar
  149. Russell, R. S., and V. M. Shorrocks. 1959. The relationship between transpiration and absorption of inorganic ions by intact plants. J. Exp. Bot., 10: 301–316.Google Scholar
  150. Ruttner, F. 1953. Fundamentals of Limnology. Trans, by Frey, D. G., and F. E. J. Fry. Toronto, University of Toronto Press.Google Scholar
  151. Sachs, J. 1882. Textbook of Botany. Vines, S. R., ed. Oxford, Clarendon Press.Google Scholar
  152. Saussure, T. Dq. 1804. Recherches Chimique Sur la Végétation, Paris, Vue Nyon, pp. 264–265.Google Scholar
  153. Schneider, A. 1901. The probable function of calcium oxalate crystals in plants. Bot. Gaz., 32: 142–144.Google Scholar
  154. Schürhoff, P. 1908. Ozellen und Lichtkondensoren bei einigen Peperomien. Beih. Bot. Zbl., 23: 14–26.Google Scholar
  155. Scott, F. M. 1941. Distribution of calcium oxalate crystals in Ricinus communis in relation to tissue differentiation and presence of other ergastic substances. Bot. Gaz., 103: 225–246.Google Scholar
  156. Smith, E. L. 1923. The histology of certain orchids with reference to mucilage secretion and crystal formation. Bull. Torrey Bot. Club, 50: 1–16.Google Scholar
  157. Solereder, H. 1908. Systematic anatomy of the dicotyledons. Trans, by Boodle and Fritsch. Oxford, Clarendon Press.Google Scholar
  158. Sorokin, H., and A. L. Sommer. 1940. Effects of calcium deficiency upon the roots of Pisum sativum. Amer. J. Bot., 27: 308–318.Google Scholar
  159. Stahl, E. 1888. Pflanzen und Schnecken. Z. Naturwiss. Med., 22: 105.Google Scholar
  160. Stahl, E. 1920. Zur Physiologie und Biologie der Exkrete. Flora, 113: 1–132.Google Scholar
  161. Steinberg, R. A. 1948. Essentiality of calcium in the nutrition of fungi. Science, 107: 423.PubMedGoogle Scholar
  162. Steinfink, H., F. G. E. Pautard, and H. J. Arnott. 1965. Crystallography of calcium oxalate in plants. Amer. J. Bot., 52: 613.Google Scholar
  163. Sterling, C. 1965. Crystal-structure analysis of Weddellite, CaC2O4-(2 + x)H2O. Acta Cryst., 18: 917–921.Google Scholar
  164. Tagawa, T., and J. Bonner. 1957. Mechanical properties of the A vena coleoptile as related to auxin and to ionic interactions. Plant Physiol., 32: 207–212.PubMedGoogle Scholar
  165. Thoms, T. 1877. Eine weisse Ablagerung in Teakholz. Cited in Ber. Deut. Chem. Ges., 10: 2, 234.Google Scholar
  166. Thunmark, S. 1926. Bidrag till kannedomen om recenta kalktuffer. Geol. Foren. Stockholm., 48: 541–583.Google Scholar
  167. Tischer, J. 1941. Über die Inhaltstoffe der Früchte von Rhus typhina L. IV. Das Vorkommen von Kristallen der primären Calciummalates in der Samenepidermis. Biochem. Z., 308: 225–229.Google Scholar
  168. Tunmann, O. 1913. Pflanzenmikrochemie. Ein Hilfsbuch beim mikrochemischen Studium pflanzlicher Objekte. Berlin, Gebrüder Borntraeger.Google Scholar
  169. Uphof, J. C. 1962. Plant hairs. In Handbuch der Pflanzenanatomie. Linsbauer, K., ed. Berlin, Gebrüder Borntraeger, Vol. 4, pp. 49–53.Google Scholar
  170. Vinogradov, A. P. 1953. The elementary chemical composition of marine organisms. Memoir No. II. Sears Foundation for Marine Research. Yale University Press.Google Scholar
  171. Vlasyuk, P. A., and A. M. Grodzinskii. 1958. Repeated use of calcium by lupine plants. Trans. Referat Zhur. Biol. 52843. Byul. Po. Fiziol. Rast., 2: 38–42.Google Scholar
  172. Wakker, J. H. 1888. Studien über die Inhaltskörper der Pflanzenzelle. Jahrb. Wiss. Bot., 19: 422–496.Google Scholar
  173. Walker, J. B. 1956. Strontium inhibition of calcium utilization by a green alga. Arch. Biochem., 60: 264–265.PubMedGoogle Scholar
  174. Wallner, J. 1935. Zur Kenntnis des unterpflanzlichem Einfluss gebildeten Kalkspates. Planta Med., 23: 51–55.Google Scholar
  175. Walter-Levy, L., and J. Laniepce. 1962. Sur la formation des hydrates de l’oxalate de calcium. C. R. Soc. Biol. (Paris), 254: 296–298.Google Scholar
  176. Walter-Levy, L., and R. Strauss. 1962. Sur la répartition des hydrates de l’oxalate de calcium chez les végétaux. C. R. Soc. Biol. (Paris), 254: 1671–1673.Google Scholar
  177. Waygood, E. R., and K. A. Clendenning. 1950. Carbonic anhydrase in green plants. Canad. J. Res., 28: 673–689.Google Scholar
  178. Weed, W. H. 1889. Formation of travertine and siliceous sinter by the vegetation of hot springs. Ann. Rep. U.S. Geol. Surv., 9: 617–676.Google Scholar
  179. Wehmer, C. 1893. Zur Charakteristik des citronensäuren Kalkes und einige Bemerkungen über die Stellung der Citronensäure im Stoffwechsel. Ber. Deut. Bot. Ges., 11: 333–343.Google Scholar
  180. Weinstein, L. H., A. N. Meiss, R. L. Uhler, and E. R. Purvis. 1956. Growth-promoting effects of ethylene-diamine tetra-acetic acid. Nature (London), 178: 1188.Google Scholar
  181. Wilbur, K. M. 1964. Shell formation and regeneration. In Physiology of Mollusca. Wilbur, K. M., and C. M. Yonge, eds. New York, Academic Press, Inc., pp. 243–282.Google Scholar
  182. Wilkins, M. B. 1966. Geotropism. Ann. Rev. Plant Physiol., 17: 379–408.Google Scholar
  183. Wilson, J. K. 1923. The nature and reaction of water from hydathodes. N.Y. (Cornell) Agr. Exp. Sta. Mem. 65.Google Scholar
  184. Woodhead, N. 1934. Studies in growth and differentiation. V. Histological and metabolic changes during wound healing in Kleinia articulata Haw. Ann. Bot., 48: 467–480.Google Scholar
  185. Zavalishina, S. F. 1939. On spheric crystals in leaves and stems of the pea. Bot. Zhurn. SSSR., 24: 221–224.Google Scholar
  186. Zimmerman, A. 1894. Sammel-Referate aus dem Gesammtgebiete der Zellenlehre. Beih. Bot. Zbl., 4: 81–101.Google Scholar

Copyright information

© Meredith Corporation 1970

Authors and Affiliations

  • Howard J. Arnott
    • 1
  • Frederick G. E. Pautard
    • 2
  1. 1.The Cell Research InstituteThe University of TexasAustinUSA
  2. 2.Mineral Metabolism Research UnitThe General InfirmaryLeedsEngland

Personalised recommendations