Advertisement

The Comparative Ultrastructure and Organization of Five Calcified Tissues

  • Dorothy F. Travis

Abstract

Of the total number of living species in the animal kingdom with mineralized tissues, two thirds of these are represented by the invertebrates and only one third is represented by the vertebrates (Travis et al., 1967). While the vast majority of the invertebrate organic matrices contain deposited calcium carbonate, either in poorly crystalline form, or as one of two of the three crystalline polymorphs, calcite or aragonite, the organic matrices of vertebrate mineralized tissues characteristically contain deposited calcium phosphate as more poorly crystalline hydroxyapatite, as in bone (Glimcher, 1959; Glimcher, 1960), or in more highly crystalline form, as in enamel (Travis and Glimcher, 1964; Glimcher et al., 1965).

Keywords

Collagen Fibril Calcify Tissue Organic Matrix Calcite Crystal Inorganic Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bevelander, G. 1952. Calcification in molluscs. III. Intake and deposition of C45 and P32 JN relation to shell formation. Biol. Bull., 102: 9.CrossRefGoogle Scholar
  2. Bevelander, G., and P. Benzer. 1948. Calcification in marine molluscs. Biol. Bull., 94: 176.PubMedCrossRefGoogle Scholar
  3. Biedermann, W. 1911. Physiolocale der Stütz- and Skelett-substanzen. In Handbuch der Vergleichenden Physiologie. Winterstein, ed. Jena, Verlag-von Gustav Fischer, Vol. 3, Parti, p. 319.Google Scholar
  4. Bøggild, O. B. 1930. The shell structure of molluscs. Kgl. Danske videnskab, Selskals, Skrifter Naturvidenskab Math. Afdel., 2: 232.Google Scholar
  5. Bonar, L. C., M. J. Glimcher, and G. Mechanic. 1965. The molecular structure at the neutral- soluble proteins of embryonic bovine enamel in the solid state. J. Ultrastruct. Res., 13: 308.PubMedCrossRefGoogle Scholar
  6. Deakins, M. 1942. Changes in the ash, water, and organic content of pig enamel during calcification. J. Dent. Res., 21: 429.CrossRefGoogle Scholar
  7. Deutler, F. 1926. Über das Wachstum des Secigalskeletts. Zool. Jahrb Abt. 2 (Anat. Ontog) Tiere, 48: 119.Google Scholar
  8. Donnay, G. H. 1956. Crystallography. Carnegie Inst. Year Book, Wash., 55: 205.Google Scholar
  9. Drach, P. 1939. Mue et cycles d’intermue chez les crutsacea decapods. Ann. Inst. Oceanog., 19: 103–109.Google Scholar
  10. Drach, P., and M. Lafon. 1942. Etude biochimique sur le squelette tegumentaire des Decapodes Brachyoures (variations au cours du cycle d’intermue), Arch. Zool. Exp., 82: 100.Google Scholar
  11. Ebner, V. V. 1887. Über den feineren Bau der Skeletteile der Kalkeschwärnme nebst Bermerkungen über Kakskelette Überhaupt: (Sitzb. K. Akad. Wiss. Wien Math-Naturu) Abt. 1, V. 95: 55–149.Google Scholar
  12. Fernhead, R. W., and J. C. Elliot. 1962. Relationship between the inorganic and organic phases in dental enamel. In 5th Int. Cong. Electron Micros. Breese, S., ed. New York, Academic Press, Inc., 2, QQ-7.Google Scholar
  13. Frank, R. M., R. F. Sognnaes, and R. Kern. 1960. Calcification of dental tissues with special reference to enamel ultrastructure. In Calcification in Biological Systems. Sognnaes, R. F., ed. Washington, D.C., Amer. Ass. Advance. Sci., p. 163.Google Scholar
  14. Glimcher, M. J. 1959. Molecular biology of mineralized tissues with particular reference for bone. Rev. Mod. Phys., 31: 359.CrossRefGoogle Scholar
  15. Glimcher, M. J. 1960. Specificity of molecular structure of organic matrices in mineralization. In Calcification in Biological Systems. Sognnaes, R. F., ed. Washington, D.C., Amer. Ass. Advance. Sci., p. 421.Google Scholar
  16. Glimcher, M. J., L. C. Bonar, and E. J. Daniel. 1961a. The molecular structure of the protein matrix of bovine dental enamel. J. Molec. Biol., 3: 541.CrossRefGoogle Scholar
  17. Glimcher, M. J., E. J. Daniel, D. F. Travis, and S. Kamhl. 1965. Electron optical and x-ray diffraction studies of the organization of the inorganic crystals in embryonic bovine enamel. J. Ultrastruct. Res. (Suppl.), 7: 1–77.Google Scholar
  18. Glimcher, M. J., U. A. Friberg, and P. T. Levine. 1964b. The amino acid composition of the organic matrix and the neutral soluble and acid soluble components of embryonic bovine enamel. Biochem. J., 93: 202.Google Scholar
  19. Glimcher, M. J., A. J. Hodge, and F. O. Schmitt. 1957. Macromolecular aggregation states in relation to mineralization: The collagen hydroxyapatite system as studied in vitro. Proc. Nat. Acad. Sci., U.S.A., 43: 860.CrossRefGoogle Scholar
  20. Glimcher, M. J., and P. T. Levine. 1966. Studies of the proteins, peptides and free amino acids of mature bovine enamel. Biochem. J., 98: 742–753.PubMedGoogle Scholar
  21. Glimcher, M. J., G. L. Mechanic, L. C. Bonar, and E. J. Daniel. 1961b. The amino acid composition of the organic matrix of decalcified foetal bovine dental enamel, J. Biol. Chem., 236: 3210.Google Scholar
  22. Glimcher, M. J., G. L. Mechanic, L. C. Bonar, and U. A. Friberg. 1964a. The amino acid composition of the organic matrix of decalcified embryonic bovine enamel. Biochem. J., 93: 198.Google Scholar
  23. Gordon, I. 1926. The development of the calcareous test of Echinus milliaris. Proc. Roy. Soc. (Biol.), 214: 259–312.Google Scholar
  24. Gordon, I. 1927. On the development of the calcareous test of Echinocardium cordatum. Proc. Roy. Soc. (Biol.), 215: 255–313.Google Scholar
  25. Gordon, I. 1929. Skeletal development in Arbacia Echinaraehnius and Leptasterias. Proc. Roy. Soc. (Biol.), 211: 289–334.Google Scholar
  26. Gregoire, C. 1957. Topography of the organic components in mother-of-pearl. J. Biophys. Biochem. Cytol., 3: 797.PubMedCrossRefGoogle Scholar
  27. Gregoire, C. 1959a. Conchiolin remnants in mother-of-pearl from fossil Cephlapoda. Nature (London), 184: 1157.CrossRefGoogle Scholar
  28. Gregoire, C. 1959b. A study on the remains of organic components in fossil mother-of-pearl. Bull. Inst. Roy. Soc. Natur. Belg., 35: 1.Google Scholar
  29. Gregoire, C. 1960. Further studies on structure of the organic components in mother-of-pearl, especially in Pelecypods (Part 1). Bull. Inst. Roy. Soc. Natur. Belg., 38: 1.Google Scholar
  30. Gregoire, C. 1961a. Sur la structure submicroscopique de la conchioline associée aux prismes des coquilles de mollusques. Bull. Inst. Roy. Soc. Natur. Belg., 37: 1.Google Scholar
  31. Gregoire, C. 1961b. Structure of the conchiolin cases of the prisms in Mytilus eduiis Linne. J. Biophys. Biochem. Cytol., 9: 385.CrossRefGoogle Scholar
  32. Gregoire, C. 1962. On submicroscopic structure of the nautilus shell. Bull. Inst. Roy. Soc. Natur. Belg., 38: 1.Google Scholar
  33. Gregoire, C., F. Duchateau, and M. Florkin. 1954. La trame protidique des nacres. Experientia, 10: 37.CrossRefGoogle Scholar
  34. Gregoire, C., F. Duchateau, and M. Florkin. 1955. La trame protidique des nacres et des perles. Ann. Inst. Oceanog., 31: 1.Google Scholar
  35. Gross, J. 1963. Comparative biochemistry of collagen. In Comparative Biochemistry: A Comprehensive Treatise. Florkin, M., and Mason, H. S., eds. New York, Academic Press, Inc., p. 307.Google Scholar
  36. Gregoire, C., and K. A. Piez. 1960. The nature of collagen. I. Invertebrate collagens. In Calcification in Biological Systems. Sognnaes, R. F., ed. Washington, D.C., Amer. Ass. Advance. Sci., p. 395.Google Scholar
  37. Gregoire, C., Z. Sokal, and H. Rougive. 1956. Structural and chemical studies on the connective tissue of marine sponges. J. Histochem. Cytochem., 4: 227.CrossRefGoogle Scholar
  38. Hare, P. E. 1963. Amino acids in the proteins from aragonite and calcite in the shells of Mytilus californianus. Science, 139: 216–217.PubMedCrossRefGoogle Scholar
  39. Hodge, A. J., and J. A. Petruska. 1963. Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule. In Aspects of Protein Structure. Ramachandran, G. N., ed. New York, Academic Press, Inc., p. 289.Google Scholar
  40. Jones, W. C. 1954. The orientation of the optic axis of spicules of Leucosolenia complicata. Quart. J. Micr. Sci., 95: 33.Google Scholar
  41. Jones, W. C. 1955a. Crystalline properties of spicules of Leucosolenia complicata. Quart. J. Micr. Sci., 96: 129.Google Scholar
  42. Jones, W. C. 1955b. The sheath of spicules of Leucosolenia complicata. Quart. J. Micr. Sei., 96: 411.Google Scholar
  43. Jones, W. C. 1956. Colloidal properties of the mesogloed in species of Leucosolenia. Quart. J. Micr. Sci., 97: 269.Google Scholar
  44. Jones, W. C. 1961. Properties of the wall of Leucosolenia variabilis. Quart. J. Micr. Sci., 102: 531.Google Scholar
  45. Jones, W. C. 1964. Photographic records of living oscular tubes or Leucosolenia variabilis. J. Mar. Biol. Ass., 4: 311.CrossRefGoogle Scholar
  46. Jones, W. C. 1966. The structure of the porocytes in the calcareous sponge Leucosolenia complicate (Montagu). J. Roy. Micr. Soc., Part I, 85: 53–62.CrossRefGoogle Scholar
  47. Jones, W. C. 1967. Sheath and axial filament of calcareous sponge spicules. Nature (London), 214: 365.CrossRefGoogle Scholar
  48. Kerchner, G. 1929. Über die Lage der optischen Achse in Skeletteilen von Seeigeln. Zool. Jahrb. Jena (Anat.), 51: 299.Google Scholar
  49. Levine, P. T., and M. J. Glimcher. 1965. The isolation and amino acid composition of the organic matrix and neutral soluble proteins of developing rodent enamel. Arch. Oral Biol., 10: 753–756.PubMedCrossRefGoogle Scholar
  50. Mass, O. 1904. Sber. Ges. Morph. Physiol., Munch., 20: 4.Google Scholar
  51. Merker, E. 1919. Studien am Skelett der Echinodermen. Zool. Jahrb. Jena (Allg. Zool.), 36: 25.Google Scholar
  52. Minchin, E. A. 1900. Sponges. In A Treatise on Zoology. Lankester, R. E., ed. London, Adam and Black, ch. 3, p. 1.Google Scholar
  53. Nylen, M. U., E. D. Eanes, and K. A. Omnell. 1963. Crystal growth in rat enamel. J. Cell Biol., 18: 109–123.PubMedCrossRefGoogle Scholar
  54. Petruska, J. A., and A. J. Hodge. 1963. Molecular overlap and holes in collagen fibrils. Biophys. Soc., 7th Annual Meeting, Abst. TA12.Google Scholar
  55. Piez, K. A., and J. Gross. 1959. The amino acid composition of morphology of some invertebrate and vertebrate collagens. Biochim. Biophys. Acta, 34: 24.PubMedCrossRefGoogle Scholar
  56. Raup, D. J., 1959. Crystallography of echinoid calcite. Geology, 67: 661.CrossRefGoogle Scholar
  57. Raup, D. J.,1960. Ontogenetic variation in the crystallography of echinoid calcite. J. Paleontol., 34: 1041–1050.Google Scholar
  58. Raup, D. J., 1962a. The phylogeny of calcite crystallography in echinoids. J. Paleontol., 36: 793–810.Google Scholar
  59. Raup, D. J., 1962b. Crystallographic data in Echinoderm classification. Systemat. Zool., 11: 97–108.CrossRefGoogle Scholar
  60. Rönnholm, E. 1962a. An electron microscopy study of the amelogenesis in human teeth. I. The fine structure of the ameloblasts. J. Ultrastruct. Res., 6: 229–247.Google Scholar
  61. Rönnholm, E. 1962b. The amelogenesis of human teeth as revealed by electron microscopy. II. The development of the enamel crystallites. J. Ultrastruct. Res., 6: 249–303.CrossRefGoogle Scholar
  62. Rönnholm, E. 1962c. III. The structure of the organic stroma of human enamel during amelogenesis. J. Ultrastruct. Res., 6: 368–369.CrossRefGoogle Scholar
  63. Schmidt, W. J. 1921. Über den kristallographischen Charakter der Prismen in den Muschelschalen. Z. Allgegem. Physiol., 19: 191.Google Scholar
  64. Schmidt, W. J. 1924. Bau und Bildung der Perlmuttermasse. Zool. Jahrb., Abt. Anat. u. Ontog. Tiere., 45: 1–148.Google Scholar
  65. Schmidt, W. J. 1924–25. Bau und Bildung der Prismen in den Muschelschalen. Mikrokosmos, 18, 49: 73–76.Google Scholar
  66. Schmidt, W. J. 1932. Bestimmung der Lage der optischen Achse in Brokristallen. In Handbuch der Biologischen Arbeitsmethoden. Abderhalden, E., ed. Berlin, Urban and Schwarzenberg, Vol. 3, p. 289.Google Scholar
  67. Schulz, A. 1935. Optik der Skelelsterike der Seesterne. Zool. J. Jahrb. Jena (Anat.), 50: 107.Google Scholar
  68. Scott, D. B., and M. U. Nylen. 1962. Organic-inorganic interrelationships in enamel and dentin: A possible key to the mechanism of caries. Int. Dent. J., 14: 417.Google Scholar
  69. Travis, D. F. 1951a. Physiological changes which occur in the blood and urine of Panulirus argus Latreille during the molting cycle. Anat. Ree., 111 (3): 157.Google Scholar
  70. Travis, D. F. 1951b. Early stages in the calcification of the skeleton of Panulirus argus Latreille. Anat. Ree., 111 (3): 124.Google Scholar
  71. Travis, D. F. 1954. The molting cycle of the spiny lobster, Panulirus Argus Latreille. I. Molting and growth in laboratory-maintained individuals. Biol. Bull., 107: 433–450.CrossRefGoogle Scholar
  72. Travis, D. F. 1955a. The molting cycle of the spiny lobster, Panulirus Argus Latreille. II. Pre-ecdysial histological and histochemical changes in the hepato-pancreas and integumental tissues. Biol. Bull., 108: 88–112.CrossRefGoogle Scholar
  73. Travis, D. F. 1955b. The molting cycle of the spiny lobster, Panulirus Argus Latreille. III. Physiological changes which occur in the blood and urine during the normal molting cycle. Biol. Bull., 109: 484–503.CrossRefGoogle Scholar
  74. Travis, D. F. 1957. The molting cycle of the spiny lobster, Panulirus Argus Latreille. IV. Post-ecdysial histological and histochemical changes in the hepatopancreas and integumental tissues. Biol. Bull., 113: 451–579.CrossRefGoogle Scholar
  75. Travis, D. F. 1960a. The deposition of skeletal structures in the crustacea. I. The histology of the gastrolith skeletal tissue complex and the gastrolith in the crayfish, Orconectes (Cambarus) Virilisagen-Decapoda. Biol. Bull., 118: 137–149.CrossRefGoogle Scholar
  76. Travis, D. F. 1960b. Matrix and mineral deposition in skeletal structures of the decapod crustacean (Phylum Arthropoda). In Calcification in Biological Systems. Sognnaes, R. F., ed. Washington, D.C., Amer. Ass. Advance. Sci., pp. 57–116.Google Scholar
  77. Travis, D. F. 1963a. The deposition of skeletal structures in the crustacea. II. The histochemical changes associated with the development to the non-mineralized skeletal components of the gastrolith discs of the crayfish, Orconectes virilis Hägen. Acta Histochem., 15: 251–284.Google Scholar
  78. Travis, D. F. 1963b. Structural features of mineralization from tissue to macromolecular levels of organization in the decapod crustacea. Ann. N.Y. Acad. Sci., 109: 177–245.CrossRefGoogle Scholar
  79. Travis, D. F. 1965. The deposition of skeletal structures in the crustacea. V. The histomorphological and histochemical changes associated with the development and calcification of the branchial exoskeleton in the crayfish, Orconectes virilis Hagen. Acta Histochem., 20: 193–222.PubMedGoogle Scholar
  80. Travis, D. F. 1968. The structure and organization of, and the relationship between, the inorganic crystals and the organic matrix of the prismatic region of Mytilus edulis. J. Ultrastruct. Res., 23: 183–215.CrossRefGoogle Scholar
  81. Travis, D. F. 1968. Comparative ultrastructure and organization of inorganic crystals and organic matrices of mineralized tissues. In Biology of the Mouth, AAAS Symposium. Pearson, P., ed., pp. 237–297.Google Scholar
  82. Travis, D. F. 1969. The structure and organization of, and the relationship between the inorganic crystals and the organic matrix of the echinoderm endoskeleton as it is related to bone. Proc. of Fifth European Symposium on Calcified Tissues, Bordeaux, 1967. Paris, Société D’Édition D’Enseignement Supérieur, p. 399.Google Scholar
  83. Travis, D. F., and U. A. Friberg. 1963a. The deposition of skeletal structures in the crustacea. IV. Microradiographic studies of the gastrolith of the crayfish Orconectes virilis Hagen. J. Ultrastruct. Res., 9: 48–65.CrossRefGoogle Scholar
  84. Travis, D. F., and U. A. Friberg. 1963b. The deposition of skeletal structures in the crustacea. VI. Microradiographic studies of the exoskeleton of the crayfish Orconectes Virili Hagen. J. Ultrastruct. Res., 9:285–301. and S. Kahmi. Unpublished data.Google Scholar
  85. Travis, D. F., and M. J. Glimcher, 1964. The structure and organization of, and the relationship between the organic matrix and the inorganic crystals of embryonic bovine enamel. J. Cell Biol., 23: 447–497.PubMedCrossRefGoogle Scholar
  86. Travis, D. F., C. François, L. C. Bonar, and M. J. Glimcher. 1967. Comparative studies of the organic matrices of invertebrate mineralized tissues. J. Ultrastruct. Res., 18: 519–550.PubMedCrossRefGoogle Scholar
  87. Tsujii, T., D. C. Sharp, and K. M. Wilbur. 1958. Studies on shell formation. VII. The submicroscopic structure of the shell of the oyster Crassostrea virginica. J. Biophys. Biochem. Cytol., 4: 275–286.PubMedCrossRefGoogle Scholar
  88. Wada, K. 1957a. Electron-microscope observations on the shell structure of pearl oyster (Pinctada marttensii) I. Bull. Natl. Pearl Res. Lab., 2: 66.Google Scholar
  89. Wada, K. 1957b. Electron-microscope observations on the shell structure of pearl oyster (Pinctada martensii) II. Bull. Natl. Pearl Res. Lab., 2: 74.Google Scholar
  90. Wada, K. 1960a. The relation between the crystalline structure of the cultured pearls and the elongation of the transplanted mantle tissues in the process of pearl-sac formation. Bull. Japan Soc., Sic. Fisheries, 26: 549–553.CrossRefGoogle Scholar
  91. Wada, K. 1960b. Crystal growth on the inner shell surface of Pinctada martensii (Dunker). I. J. Electron Microscopy, 9: 21.Google Scholar
  92. Wada, K. 1966. Crystal growth of molluscan shells. Bull. Natl. Pearl Res. Lab., 7: 703.Google Scholar
  93. Watabe, N. 1954. Electron-microscopic observations of the aragonite crystals on the surface of cultured pearls. Rep. Fac. Fisheries Prefect Univ. Mie., 1: 449–453.Google Scholar
  94. Wada, K. 1955. The observation of the surface structure of the cultured pearls relating to the color and luster. Rep. Fac. Fisheries Prefect Univ. Mie., 2: 18–26.Google Scholar
  95. Wada, K. 1965. Studies on shell formation. XI. Crystal-matrix relationships in the inner layers of mollusk shells. J. Ultrastruc. Res., 12: 351–370.CrossRefGoogle Scholar
  96. Wada, K., D. G. Sharp, and K. M. Wilbur. 1958. Studies on shell formation. VIII. Electron microscopy of crystal growth of the nacreous layer of the oyster Crassostrea virginica. J. Biophys. Biochem. Cytol., 4: 281–286.CrossRefGoogle Scholar
  97. Wada, K., and K. M. Wilbur. 1960. Influence of the organic matrix on crystal type in molluscs. Nature (London), 188: 334.Google Scholar
  98. Wada, K., and K. M. Wilbur. 1961. Studies on shell formation. IX. An electron microscope study of crystal layer formation in the oyster. J. Biophys. Biochem. Cytol., 9: 761–771.CrossRefGoogle Scholar
  99. Watson, M. R., and N. R. Silvester. 1959. Studies of invertebrate collagen preparations. Biochem. J., 71: 578.PubMedGoogle Scholar
  100. Weinschenk, E. 1905. Ùeber die Skeletteile der Kâlkschwamme. Zentbl. Miner. Geol. Palâont., 19: 581.Google Scholar
  101. West, C. C. 1937. Note on the crystallography of the echinoderm skeleton. J. Paleontol., 11: 458.Google Scholar
  102. Wilbur, K. M., and N. Watabe. 1963. Experimental studies of calcification in molluscs and the alga Coccolitus huxleyi. Ann. N.Y. Acad. Sci., 109: 82.PubMedCrossRefGoogle Scholar
  103. Woodland, W. 1905. Studies in spicule formation. III. On the mode of formation of the spicular skeleton in the pleuteus of Echinus esculentus. Quart. J. Micr. Sci., 49: 305–325.Google Scholar

Copyright information

© Meredith Corporation 1970

Authors and Affiliations

  • Dorothy F. Travis
    • 1
    • 2
  1. 1.Gerontology Research CenterBaltimore City HospitalsBaltimoreUSA
  2. 2.National Institute of Child Health and Human DevelopmentBaltimore City HospitalsBaltimoreUSA

Personalised recommendations