Advertisement

Calcification in Unicellular Organisms

  • Frederick G. E. Pautard

Keywords

Calcium Carbonate Calcium Phosphate Gulf Stream Bacillus Megaterium Planktonic Foraminifera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

On acquiert ainsi la conviction qu’il existe des animaux sans epithelium, et qu’une substance animale molle et sans fibres peut s’étendre et se prolonger en filamens libre par une sorte de’afflux, en vertu d’une force inhérente.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, George, the elder. 1947. Micrographia Illustrata, 2nd Ed. London, Brit.Google Scholar
  2. Aiguchi, K., and J. L. Smith. 1961. Studies on the nutrition and physiology of Pasteurella pestis. VI. A differential plating medium for the estimation of mutation rate to avirulence. J. Bact., 81: 606–613.Google Scholar
  3. Angell, R. W. 1965. The process of chamber formation in the foraminifer Rosalina floridana (Cushman). Ph.D. Thesis, University of Chicago Press.Google Scholar
  4. Angell, R. W. 1967a. The test structure and composition of the foraminifer Rosalina floridana. J. Protozool., 14: 299–307.Google Scholar
  5. Angell, R. W. 1967b. The process of chamber formation in Rosalina floridana (Cushman). J. Protozool., 14: 566–574.Google Scholar
  6. Agricola, G. 1546. De Natura Fossilium. Trans, by Bandy, M. C., and Bandy, J. A. Geol. Soc. Amer. Special Paper 63, 1955.Google Scholar
  7. Arnold, Z. M. 1964. Biological observations on the foraminifer Spiroloculina hyalina Schultze. Univ. Calif. Publ. Zool., 72: 1–78.Google Scholar
  8. Arnott, H. J. 1966. Studies of calcification in plants. In Calcified Tissues. Fleisch, H., Blackwood, H. J. J., and Owen, M. New York, Springer-Verlag New York Inc.Google Scholar
  9. Arnott, H. J., and F. G. E. Pautard. 1967. Osteoblast function and fine structure. Israel J. Med. Sci., 3: 657–670.Google Scholar
  10. Arnott, H. J., and F. G. E. Pautard. 1968. The inorganic phase of bone: A re-appraisal. Calcif. Tissue. Res., 2:Suppl.Google Scholar
  11. Averintsev, S. 1903. Über die Struktur der Kalkschalen marine Rhizopoden. Zeit. Wiss. Zool., 74: 478–490.Google Scholar
  12. Baier, C. R. 1937. Die Bedeutung der Bakterien für den Kalktransport in den Gewässern. Geologie Meere Binnengewäss., 1: 75–105.Google Scholar
  13. Bandy, O. L. 1954. Aragonite tests among the Foraminifera. J. Sed. Petrol., 24: 60–61.Google Scholar
  14. Bandy, O. L. 1960. General correlation of foraminiferal structure with environment. Int. Geol. Cong. Norden (Copenhagen), 22: 7–19.Google Scholar
  15. Bartels, H. A. 1951. Bacterial growth and crystal formation. II. Production of calcium carbonate crystals. J. Dent. Res., 30: 642–644.PubMedGoogle Scholar
  16. Bartels, H. A. 1952. Microorganisms in salivary calculus formation. New York Dent. J., 18: 241–248.Google Scholar
  17. Bavendamm, W. 1932. Die mikrobiologische Kalkfällung in der tropischen See. Ber. Deutsch. Bot. Ges., 49: 282–287.Google Scholar
  18. Be, A. W. H., and D. B. Ericson. 1963. Aspects of calcification in planktonic foraminifera (Sarcodina). Ann. N.Y. Acad. Sci., 109: 65–81.PubMedGoogle Scholar
  19. Beavon, J., and W. G. Heatley. 1963. The occurrence of struvite (magnesium ammonium phosphate hexahydrate) in microbial cultures. J. Gen. Microbiol., 31: 167–170.PubMedGoogle Scholar
  20. Berkeley, C. 1919. A study of marine bacteria: Straits of Georgia, B. C. Trans. Roy. Soc. Canad., 13: 15–43.Google Scholar
  21. Bernard, F. 1948. Recherches sur le cycle du Coccolithus fragilis Lohm. Flagellé dominant des mers chaudes. J. Cons. Int. Explor. Mer, 15: 177–188.Google Scholar
  22. Bernard, F. 1949. Remarques sur la biologie de Coccolithus fragilis Lohm., Flagellé calcaire dominant due plancton méditerranéen. Mem. Soc. Hist. Nat. Afr. N. T., 2: 21–28.Google Scholar
  23. Bernheimer, A. W. 1938. A comparative study of the crystalline inclusions of Protozoa. Trans. Amer. Micr. Soc., 57: 336–343.Google Scholar
  24. Bien, S. M. 1967. High hydrostatic pressure effects on Spirostomum ambiguum. Calcif. Tissue. Res., 1: 170–172.PubMedGoogle Scholar
  25. Birkenes, E., and Braarud, T. 1952. Phytoplankton in the Oslo Fjord during a “Coccolithus huxleyi-summer.” Avhandling Norske videns. Akad. Mat. Nat., 1: 1–23.Google Scholar
  26. Bishop, A. 1927. The cytoplasmic structure of Spirostomum ambiguum (Ehrenberg). Quart. J. Micr. Sci., 71: 147–172.Google Scholar
  27. Black, M. 1963. The fine structure of the mineral parts of the Coccolithophoridae. Proc. Linn. Soc. (London), 174: 41–46.Google Scholar
  28. Boltges, T. Y. K. 1935. Untersuchungen über die nitrifizierenden Bakterien. Arch. Mikrobiol., 6: 79–138.Google Scholar
  29. Bonte, A. 1944. Orbitammina elliptica d’Arch. sp. Foraminifére de grande taille du Bathonien supérieur d’LAisne et des Ardennes. Soc. Géol. France Bull., 12: 320–350.Google Scholar
  30. Braarud, T. 1962. Electron microscope studies of coccoliths in oceanic deposits. Nature (London), 193: 1035–1036.Google Scholar
  31. Braarud, T., and E. Fagerland. 1946. A coccolithophoride in laboratory culture. Syracosphaera carterae n. sp. Avhandling norske Videns. Akad. Mat. Nat., 2: 1–10.Google Scholar
  32. Braarud, T., K. R. Gaardner, J. Markali, and E. Nordli. 1952. Coccolithophorids studied in the electron microscope. I. Observations on Coccolithus huxleyi and Syracosphaera carterae. Nytt. Mag. Bot., 1: 129–134.Google Scholar
  33. Braarud, T., and E. Nordli. 1952. Coccoliths of Coccolithus huxleyi seen in the electron microscope. Nature (London), 170: 361–362.Google Scholar
  34. Bramlette, M. N., and F. R. Sullivan. 1964. Coccolithophorids and related nannoplankton of the early Tertiary in California. Micropaleontology, 7: 129–188.Google Scholar
  35. Brewer, C. R., et al. 1946. Studies on the nutritional requirements of Bacillus anthracis. Arch. Biochem., 10: 65–75.PubMedGoogle Scholar
  36. Buchanan, J. B., and R. H. Hedley. 1960. A contribution to the biology of Astrorhiza limicola (Foraminifera). J. Mar. Biol. Ass. U.K., 39: 549–560.Google Scholar
  37. Bulleid, A. 1925. An experimental study of Leptothix buccalis. Brit. Dent. J., 46: 289–300.Google Scholar
  38. Bütschli, O. 1908. Untersuchung über organische Kalkgebilde nebst Bemerkungen über organische Kieselgebilde. Gesell. Wiss. (Göttingen) Math. Phys. Kl. Abhandl., 6: 1–177.Google Scholar
  39. Cambar, R., M. Leblanc, M. Mercier, and R. Thomas. 1964. Etude en microscope électronique des microstructures superficielles de Protistes fossiles ou vivants. C. R. Acad. Sci. (Paris), 258: 3554–3555.Google Scholar
  40. Chapman, F. 1902. The Foraminifera. London, Longmans, Green and Company.Google Scholar
  41. Chave, K. E. 1954. Aspects of the biogeochemistry of magnesium. I. Calcareous marine organisms. J. Geol., 62: 266–283.Google Scholar
  42. Clarke, F. W., and W. C. Wheeler. 1922. The inorganic constituents of marine invertebrates. U.S. Geol. Survey, Prof. Paper 124.Google Scholar
  43. Curran, H. R., B. C. Brunstetter, and A. T. Meyers. 1943. Spectrochemical analysis of vegetative cells and spores of bacteria. J. Bact., 45: 485–494.PubMedGoogle Scholar
  44. Daniel, W. A., and C. F. T. Mattern. 1965. Some observations on the structure of the peristomal membranelle of Spirostomum ambiguum. J. Protozool., 12: 14–27.PubMedGoogle Scholar
  45. Deflandre, G. 1934. Sur un foraminifére siliceux fossile des diatomites miocènes de Californie: Silicotextulina diatomitarum n. g. n. sp. C.R. Acad. Sci. (Paris), 198: 1446–1448.Google Scholar
  46. Deflandre, G. 1953. In Traité de Zoologie. Grassé, P. P., ed. Paris, Masson et Cie, Vol. 1, p. 143.Google Scholar
  47. Deflandre, G., and C. Fert. 1952. Sur la structure fine de quelques coccolithes fossiles observées au microscope électronique: Signification morphôgénetique et application à la systématique. C.R. Acad. Sci. (Paris), 234: 2100–2102.Google Scholar
  48. Deflandre, G., and C. Fert. 1953. Etude des Coccolithophoridés des vases actuelles au microscope électronique: Orientation des particules élémentaires de calcaire en rapport avec les notions d’Heliolithae et d’Ortholithae. C.R. Acad. Sci. (Paris), 236: 328–330.Google Scholar
  49. De-The, G. 1964. Cytoplasmic microtubules in different animal cells. J. Cell. Biol., 23: 265–275.Google Scholar
  50. Dick, A. B. 1928. On needles of rutile in the test of Bathysiphon argenteus. Trans. Edinburgh Geol. Soc., 12: 19–21.Google Scholar
  51. Dixon, H. H. 1900. On the structure of coccospheres and the origin of coccoliths. Proc. Roy. Soc. (Biol.), 68: 305–315.Google Scholar
  52. Dogeil, V. A. 1929. Die sog. “Konkrementenvakuole” des Infusorien als eine Statocyste betrachtet. Arch. Protistenk., 68: 319–348.Google Scholar
  53. Donnay, G. 1956. Crystallography. Carnegie Inst., Yearbook, Wash., 55: 203–206.Google Scholar
  54. D’orbigny, A. C. 1826. Tableau méthodique de la classe de Céphalopodes. Ann. Sei. Nat. Paris, 7: 243–314.Google Scholar
  55. Drew, G. H. 1911. The action of some denitrifying bacteria in tropical and temperate seas and the bacterial precipitation of calcium carbonate in the sea. J. Mar. Biol. Ass. U.K., 9: 142–155.Google Scholar
  56. Drew, G. H. 1912. Report of marine bacteria carried on at Andros Island, Bahamas, British West Indies, in May, 1912. Carnegie Inst., Yearbook, Wash., 11: 136–144.Google Scholar
  57. Drew, G. H. 1913. On the precipitation of calcium carbonate in the sea by marine bacteria and on the action of denitrifying bacteria in tropical and temperate seas. J. Mar. Biol. Ass. U. K., 9: 479–524.Google Scholar
  58. Drew, G. H. 1914. On the precipitation of calcium carbonate in the sea by marine bacteria and on the action of denitrifying bacteria in tropical and temperate seas. Carnegie Inst., Yearbook, Wash., 5: 7–45.Google Scholar
  59. Drum, R. W. 1963. The cytoplasmic fine structure of the diatom, Nitzschia palea. J. Cell Biol., 18: 429–440.PubMedGoogle Scholar
  60. Drum, R. W., and H. S. Pankratz. 1964. Post mitotic fine structure of Gomphonema parvulum. J. Ultrastruct. Res., 10: 217–223.PubMedGoogle Scholar
  61. Dujardin, F. 1835. Observations sur les rhizopodes et les infusoires. C.R. Acad. Sci. (Paris), 1: 338–340.Google Scholar
  62. Dunbar, C. O., and J. W. Skinner. 1934. Permian and Fusulinidae of Texas. University of Texas Bull. 3701. Austin, University of Texas Press.Google Scholar
  63. Ehret, C. F., and G. De Haller. 1963. Origin, development and maturation of organelles and organelle systems of the cell surface in Paramecium. J. Ultrastruct. Res., (Suppl.) 6: 1–42.Google Scholar
  64. Ellis, B. F., and A. R. Messina. 1966. Catalogue of index Foraminifera. New York, American Museum of Natural History. See also: Cuviller, J. 1930. Révision de Nummulitique Égyptien. Inst. Égypte. Mém., Cairo, 16: 1–371.Google Scholar
  65. Ennever, J. 1960. Intracellular calcification by oral filamentous organisms. J. Periodont., 31: 304–307.Google Scholar
  66. Ennever, J. 1963. Microbiologic calcification. Ann. N.Y. Acad. Sci., 109: 4–13.Google Scholar
  67. Ennever, J., and H. Creamer. 1967. Microbiologic calcification: Bone mineral and bacteria. Calcif. Tissue Res., 1: 87–93.PubMedGoogle Scholar
  68. Faure-Fremiet, E. 1957. Concrétions minérales intracytoplasmiques chez les ciliés. J. Protozool., 4: 96–109.Google Scholar
  69. Feeney, R. E., and J. A. Garibaldi. 1948. Studies on the mineral nutrition of the subtilin- producing strain of Bacillus subtilis. Arch. Biochem., 17: 447–458.PubMedGoogle Scholar
  70. Fincham, A. F. 1966. The natural mineralization of keratins. Ph.D. Thesis, Leeds University.Google Scholar
  71. Finley, H. E., C. A. Brown, and W. A. Daniel. 1964. Electron microscopy of the ectoplasm and infraciliature of Spirostomum ambiguum. J. Protozool., 11: 264–280.Google Scholar
  72. Foerster, H. F., and J. W. Foster. 1966. Endotrophic calcium, strontium and barium spores of Bacillus megaterium and Bacillus cereus. J. Bact., 91: 1333–1345.PubMedGoogle Scholar
  73. Frazier, P. D., and B. O. Fowler. 1967. X-ray diffraction and infrared study of the ‘sulphur granules’ of Actinomyces bovis. J. Gen. Microbiol., 46: 445–450.Google Scholar
  74. Gaardner, K. R. 1962. Electron microscope studies on holococcolithophorids. Nytt. Mag. Bot., 10: 35–51.Google Scholar
  75. Gaardner, K. R., J. Markali, and E. Ramsfjell. 1954. Further observations on the coccolithophorid Calciopappus caudatus. Avhandling Norske Videns. Akad. Mat. Nat., 1: 1–10.Google Scholar
  76. Gignoux, M., and A. L. Moret. 1920. Le genre Orbitopsella Mun.-Chalm. et ses relations avec Orbitolina. Soc. Géol. France Bull., 20: 129–140.Google Scholar
  77. Glaessner, M. F. 1945. Principles of Micropaleontology. Melbourne, Melbourne University Press.Google Scholar
  78. Glimcher, M. J. 1960. Molecular biology of mineralized tissues with particular reference to bone. Rev. Modern Physics, 31: 359–393.Google Scholar
  79. Gonzales, H. A., and R. F. Sognnaes. 1960. Electron microscopy of dental calculus. Science, 131: 156–158.PubMedGoogle Scholar
  80. Greenfield, L. J. 1963. Metabolism and concentration of calcium and magnesium and pre- H cipitation of calcium carbonate by a marine bacterium. Ann. N.Y. Acad. Sci., 109: 23–45.Google Scholar
  81. Gregoire, C. 1957. Topography of the organic components in mother-of-pearl. J. Biophys. Biochem. Cytol., 3: 797–808.PubMedGoogle Scholar
  82. Grelet, N. 1952. Le déterminisme de la sporulation de Bacillus megaterium. IV. Constituants minéraux du milieu synthétique necéssaire à la sporulation. Ann. Inst. Pasteur (Paris), 83: 7–79.Google Scholar
  83. Gross, W. 1930. De Fische des mittleren Old Red Süd-Liviands. Geol. Paleont. Abhandl. Berlin, 18: 123–156.Google Scholar
  84. Grunau, H. R., and H. Studer. 1956. Elektronmicroscopische Untersuchungen an Bianconekalken des Sudtessens. Experientia, 12: 141–143.Google Scholar
  85. Gubarev, E. M., and I. L. Bakulenko. 1945. Sostav i svoistava lipidov Cory neb act erium diptheriae (Composition and characteristics of Cory neb act erium diptheriae). Biokhimiya, 10: 285–295.Google Scholar
  86. Halldal, P., and J. Markali. 1954. Morphology and microstructure of coccoliths studied in the electron microscope. Observations on Acanthosphaera robusta and Calyptrosphaera papillifera. Nytt. Mag. Bot., 2: 117–119.Google Scholar
  87. Halldal, P., and J. Markali. 1955. Electron microscope studies on coccolithophorids from the Norwegian Sea, the Gulf Stream and the Mediterranean. Avhandling Norske Videns. Akad. Mat. Nat., 1: 1–30.Google Scholar
  88. Harper, R. A., and A. S. Posner. 1966. Measurement of noncrystalline calcium phosphate;n bone mineral. Proc. Soc. Exp. Biol. Med. 122: 137–142.PubMedGoogle Scholar
  89. Hay, W. W., and K. M. Towe. 1962. Electron-microscope studies of Braarudosphaera bigelowi and some related coccolithophorids. Science, 137: 426–428.PubMedGoogle Scholar
  90. Hay, W. W., K. M. Towe, and R. C. Wright. 1963. Ultramicrostructure of some selected foraminiferal tests. Micropaleontology, 9: 171–196.Google Scholar
  91. Hedley, R. H. 1958. A contribution to the biology and cytology of Haliphysema (Foraminifera). Proc. Zool. Soc. (London), 130: 567–576.Google Scholar
  92. Hedley, R. H., and J. ST. J. Wakefield. 1968. A collagen-like sheath in the arenaceous foraminifera Haliphysema (Protozoa). J. Roy. Micr. Sci., 89: 475–481.Google Scholar
  93. Heinzerling, O. 1908. Der Bau der Diatomeenzellen mit besonderer Berücksichtigung der ergastischen Gebilde und der Bezeihung des Baues zur Systematik. Bibl. Botanica. ( Suppl. ), 69.Google Scholar
  94. Herodotus. Book 11/12. Trans, into English by Godley, A. D. London, William Heinemann, Ltd., p. 287, 1921.Google Scholar
  95. Hewitt, H. B. 1947. Bacterial “calculi.” J. Path. Bact., 59: 657–664.PubMedGoogle Scholar
  96. Hodges, T. K., and J. B. Hanson. 1965. Calcium accumulation by maize mitochondria. Plant Physiol., 40: 101–109.PubMedGoogle Scholar
  97. Hofker, J. 1953. Arenaceous tests in Foraminifera—chalk or silica. Micropaleontologist, 7: 65–66.Google Scholar
  98. Hofker, J. 1954. Chamber arrangement in Foraminifera. Micropaleontologist, 8: 30–32.Google Scholar
  99. Honjo, S., and A. G. Fischer. 1964. Fossil coccoliths in limestone examined by electron microscopy. Science, 144: 83–839.Google Scholar
  100. Hooke, R. 1664. Micrographia. London, James Allestry.Google Scholar
  101. Horner, C. K., and D. Burk. 1934. Magnesium, calcium and iron requirements for growth of Azotobacter in free and fixed nitrogen. J. Agric. Res., 48: 981–995.Google Scholar
  102. Horning, E. S., and G. H. Scott. 1933. Comparative cytochemical studies by micro-incineration of a saprozoic and an holozoic infusorian. J. Morph., 54: 389–397.Google Scholar
  103. Humphrey, B. A., and J. M. Vincent. 1962. Calcium in the cell wall of Rhizobium trifolii. J. Gen. Microbiol., 29: 557–561.PubMedGoogle Scholar
  104. Humphrey, B. A., and J. M. Vincent. 1965. The effect of calcium nutrition on the production of diffusible antigens by Rhizobium trifolii. J. Gen. Microbiol., 41: 109–118.PubMedGoogle Scholar
  105. Hustedt, F. 1930. Die Kieselalgen Deutschiends, Österreichs und der Schweiz. Rabenhorsts Kryptogamen-Flora. Weinheimer, Von J. Cramer, Vol. 7.Google Scholar
  106. Huxley, T. H. 1868. On some organisms living at great depth in the North Atlantic Ocean. Quart. J. Micr. Sci., 8: 203–212.Google Scholar
  107. Isenberg, H. D., L. S. La Vine, C. Mandwell, and H. Weissfellner. 1965. Qualitative chemical composition of the calcifying organic matrix obtained from cell-free coccolith. Nature (London), 206: 1151–1152.Google Scholar
  108. Isenberg, H. D., et al. 1966. A protozoan model of hard tissue formation. Ann. N.Y. Acad. Sci., 136: 155–190.Google Scholar
  109. Isenberg, H. D., L. S. Lavine, M. L. Moss, D. Kupferstein, and P. E. Lear. 1963a. Calcification in a marine coccolithophorid. Ann. N.Y. Acad. Sci., 109: 49–64.Google Scholar
  110. Isenberg, H. D., L. S. Lavine, and H. Weissfellner. 1963b. The suppression of mineralization in a coccolithophorid by an inhibitor of carbonic anhydrase. J. Protozool., 10: 477–479.Google Scholar
  111. Isenberg, H. D., L. S. Lavine, M. L. Moss, M. H. Shamos, and H. Weissfellner. 1964. Calcium45 turnover in mineralizing coccolithophorid protozoan. J. Protozool., 11: 531–534.PubMedGoogle Scholar
  112. Jahn, B. 1953. Electronenmikroskopische Untersuchungen an Foraminiferenschalen. Zeit. Wiss. Microscop. Technik., 61: 294–297.Google Scholar
  113. Johnson, R. C., and N. D. Gary. 1963. Nutrition of Leptospira pomona. III. Calcium, magnesium and potassium requirements. J. Bact., 85: 983–985.PubMedGoogle Scholar
  114. Jones, A. R. 1965. Uptake and loss of 45-Ca by Spirostomum ambiguum. J. Protozool. (Suppl.), 12: 4.Google Scholar
  115. Jones, A. R. 1966. Uptake of 45-Ca by Spirostomum ambiguum. J. Protozool., 13: 422–428.PubMedGoogle Scholar
  116. Jones, A. R. 1967. Calcium and phosphorus accumulation in Spirostomum ambiguum. J. Protozool., 14: 220–225.PubMedGoogle Scholar
  117. Kamptner, E. 1956. Das Kalkskelett von Coccolithus huxleyi (Lohm) Kpt. und Gephyrocapsa oceanica Kpt. (Coccolithineae). Arch. Protistenk., 101: 171–202.Google Scholar
  118. Keeler, R. F., and M. L. Gray. 1960. Antigenic and related biochemical properties of Listeria monocytogenes. I. Preparation and composition of cell wall material. J. Bact., 80: 683–692.PubMedGoogle Scholar
  119. Kellerman, K. F. 1915. Relation of bacteria to depositions of calcium carbonate. Bull. Geol. Soc. Amer., 26: 58.Google Scholar
  120. Kellerman, K. F., and N. R. Smith. 1914. Bacterial precipitation of calcium carbonate. J. Wash. Acad. Sci., 4: 400–402.Google Scholar
  121. Kellerman, K. F., and N. R. Smith. 1916. Halophytic and lime precipitating bacteria. Centralbl. Bakt. Abt., I I, 45: 371.Google Scholar
  122. Kelly, P. G., P. T. P. Oliver, and F. G. E. Pautard. 1965. The shell of Lingua unguis. In Calcified Tissues. Richelle, L. J., and Dallemagne, M. J., eds. Liège, Université de Liège.Google Scholar
  123. Kerr, T. 1952. The scale of primitive living actinopterygians. Proc. Zool. Soc. (London), 122: 55–78.Google Scholar
  124. Knayshi, G. 1961. Determination by spodography of the intracellular distribution of mineral matter throughout the life history of Bacillus cereus. J. Bact., 82: 556–563.Google Scholar
  125. Knayshi, G. 1965. Further observation on the spodogram of Bacillus cereus endospore. J. Bact., 90: 453–455.Google Scholar
  126. Kondo, M., and J. W. Foster. 1967. Chemical and electron microscope studies on fractions prepared from the coats of Bacillus spores. J. Gen. Microbiol., 47: 257–271.PubMedGoogle Scholar
  127. Krasheninnikov, V. A. 1960. Microstructure of the wall in Miocene discorbids and rotaliids. Voprosy Mikropaleont. Akad. Nauk. SSSR Otdel. Geol. Geog. Nauk. Geol. Inst. No. 3: 41–43.Google Scholar
  128. Krinsley, D. 1960. Trace elements in the tests of planktonic Foraminifera. Micropaleontology, 6: 297–300.Google Scholar
  129. Lacroix, E. 1926. Du choix des coccolithes par les Foraminiféres arénacés pour l’édification de leures tests. Acco. Franc. Avanc. Sci. ( Lyon ), 418–421.Google Scholar
  130. Lansing, A. I. 1938. Localization of calcium in Paramecium caudatum. Science, 87: 303–304.PubMedGoogle Scholar
  131. Lanz, I. 1940. Über geformte mineralische Einschlüsse der Diatomeenzelle (Beiträge zur Kenntnis der Nauheimer Protophyten V). Ber. Deutsch. Bot. Ges., 58: 502–515.Google Scholar
  132. Lecalvez, Y. 1950. Révision des Foraminiféres Lutétiens du Bassin de Paris. III. Poly- morphinidae, Buliminidae, Nonionidae. Carte Geol. Detaillée France, Mém. 54.Google Scholar
  133. Lehninger, A. L. 1965. The Mitochondrion. New York, W. A. Benjamin, pp. 164–165.Google Scholar
  134. Lewin, R. A., and T. J. Chow. 1961. La enpreno de strontio en kokolitoforoj. Plant Cell Physiol., 2: 203–208.Google Scholar
  135. Linnaeus (Caroli Linne). 1758. Systema naturae per régna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. G. Engelman.Google Scholar
  136. Lipman, C. B. 1924. A critical and experimental study of Drew’s bacterial hypothesis on CaCO8 precipitation in the sea. Carnegie Inst., Yearbook, Wash., 19: 179–191.Google Scholar
  137. Lipman, C. B., 1929. Further studies on marine bacteria with special reference to the Drew hypothesis on CaCO3 precipitatio nin the sea. Carnegie Inst., Wash., Publ. 391., 26: 231–248.Google Scholar
  138. Loeblich, A. R., and H. Tappan. 1955. Revision of some recent foraminiferal genera. Smithsonian Misc. Collection, 128: 1–37.Google Scholar
  139. Loeblich, A. R., and H. Tappan. 1964. Sarcodina, chiefly “Thecamoebians” and Foraminiferida. In Treatise on Invertebrate Paleontology. Moore, R. C., ed. Lawrence, Kansas, University Press of Kansas, Vol. 1, Part C, Protista 2, pp. C164 - C496.Google Scholar
  140. Loeblich, A. R., and H. Tappan. 1966. Annotated index and bibliography of the calcareous nanno-plankton. Phycologia, 5: 81–216.Google Scholar
  141. Lynts, G. W., and R. M. Pfister. 1967. Surface ultrastructure of some tests of recent Foraminifera from the Dry Tortugas, Florida. J. Protozool., 14: 384–399.Google Scholar
  142. Macallum, A. B. 1908. Die Methoden und Ergebnisse der Mikrochemie in der biologischen Forschung. Ergebn. Physiol., 7: 552–652.Google Scholar
  143. Maclennan, R. F., and H. K. Murer. 1933. Localization of mineral ash in the organelles and cytoplasmic components of Paramecium. J. Morph., 44: 421–434.Google Scholar
  144. Maclennan, R. F., and H. K. Murer. 1934. Localization of mineral ash in the organelles of Trichonympha, a hypermastigote flagellate from Zootermopsis angusticollis. J. Morph., 56: 231–242.Google Scholar
  145. Maier, H. N. 1903. Über den feineren Bau der Wimperapparate der Infusorien. Arch. Protistenk., 2: 73–179.Google Scholar
  146. Manton, I., and G. F. Leedale. 1963. Observations on the micro-anatomy of Crystallolithus hyalinus Gaardner and Markali. Arch. Mikrobiol., 47: 115–136.Google Scholar
  147. Mast, S. O., and W. L. Doyle. 1935a. Structure, origin and function of cytoplasmic constituents in Amoeba proteus. I. Structure. Arch. Protistenk., 86: 155–180.Google Scholar
  148. Mast, S. O., and W. L. Doyle. 1935b. Structure, origin and function of cytoplasmic constituents in Amoeba proteus with special reference to mitochondria and Golgi substance. II. Origin and function based on experimental evidence; effect of centrifuging on Amoeba proteus. Arch. Protistenk., 86: 278–306.Google Scholar
  149. Mayall, B. H., and C. F. Robinow. 1957. Observation with the electron microscope on the organization of the cortex of resting and germinating spores of B. megaterium. J. Appl. Bact., 20: 333–341.Google Scholar
  150. Mayer, F. K. 1932. Über die Modifikation des Kalzium Karbonate in Schalen und Skeletten rezenter und fossiler Organismen. Chemie der Erde, 7: 346–350.Google Scholar
  151. Monaghan, P. H., and M. A. Lytle. 1956. The origin of calcareous ooliths. J. Sed. Petrol., 26: 111–118.Google Scholar
  152. Moor, H. 1967. Der Feinbau der Mikrotubuli in Hefe nach Gefrierätzung. Protoplasma, 64: 84–103.Google Scholar
  153. Moore, R. C., ed. 1964. Treatise on Invertebrate Paleontology. Lawrence, Kansas, University Press of Kansas, Vol. 2, Part C, Protista 2.Google Scholar
  154. Moss, M. L. 1963. Addendum to: Be, A. W. H., and D. B. Ericson. Aspects of calcification in planktonic Foraminifera (Sarcodina). Ann. N.Y. Acad. Sci., 109: 80.Google Scholar
  155. Moss, M. L. 1964. The phylogeny of mineralized tissues. Int. Rev. Gen. Exp. Zool., 1: 297–331.Google Scholar
  156. Murrell, W. G. 1967. The biochemistry of the bacterial endospore. In Advances in Microbial Physiology. Rose, A. H., and Wilkinson, J. F., Eds. New York, Academic Press, Inc., Vol. l, pp. 133–251.Google Scholar
  157. Murti, C. R. K. 1960. Preparation of bacterial enzymes by controlled lysis. Biochem. Biophys. Acta, 45: 243–249.Google Scholar
  158. Myers, E. M. 1943. Biology, ecology and morphogenesis of peligic foraminifera. Stanford Univ. Publ. Biol. Sci., 9: 5–30.Google Scholar
  159. Nadson, S. 1903. Die Mikroorganismen als geologische Faktoren. I Über die Schwefel- wasserstoffgährung in Weissowo-Salzee und über die Betheiligung der Mikroorganismen bei der Bildung des schwarzen Schlammes (Heilschlammes). Arbeit. Commission Erforsch. Mineral. Slawjansk, St. Petersburg.Google Scholar
  160. Nadson, S. 1904. Die Mikroorganismen als geologische Faktoren. I. Über die Schwefelwasserstoffgährung in Weissowo-Salzee und über die Betheiligung der Mikroorganismen bei der Bildung des schwarzen Schlammes (Heilschlammes). Bot. Zbl. (Abstr.), 96: 591–593.Google Scholar
  161. Nadson, S. 1928. Beitrag zur Kenntnis der bakteriogenen Kalkablagerungen. Arch. Hydrobiol., 19: 154–164.Google Scholar
  162. Neresheimer, E. R. 1903. Über die Hohe histologischer Differenzierung bei Heterotrichen Ciliaten. Arch. Protistenk., 2: 305–328.Google Scholar
  163. Norris, J. R., and H. L. Jensen. 1957. Calcium requirements for Azotobacter. Nature (London), 180: 1493–1494.Google Scholar
  164. Nyholm, K. G. 1957. Orientation and binding power of recent monothalamous Foraminifera in soft sediments. Micropaleontology, 3: 76–78.Google Scholar
  165. Oppenheimer, C. H. 1961. Note on the formation of spherical aragonitic bodies in the presence of bacteria from the Bahama Bank. Geochim. Cosmochim. Acta, 23: 295–296.Google Scholar
  166. Ørvig, T. 1967. Histologic studies of ostracoderms, placoderms and fossil elasmobranchs. II. On the dermal skeleton of two late Paleozoic elasmobranchs. Arkiv. for Zool., 19: 1–40.Google Scholar
  167. Paasche, E. 1962. Coccolith formation. Nature (London), 193: 1094–1095.Google Scholar
  168. Paasche, E. 1962. Coccolith formation. (Error corrected), Nature (London), 194: 1024.Google Scholar
  169. Paasche, E. 1963. The adaptation of the carbon-14 method for the measurement of coccolith production in Coccolithus huxleyi. Physiol. Plantarum, 16: 186–200.Google Scholar
  170. Paasche, E. 1964. A tracer study of the inorganic carbon uptake during coccolith formation and photosynthesis in the coccolithophorid Coccolithus huxleyi. Physiol. Plantarum (Suppl.), 3: 1–82.Google Scholar
  171. Paasche, E. 1965. The effect of 3-(p-chlorophenyl)-l, 1-dimethylurea (CMU) on photosynthesis and light-dependent coccolith formation in Coccolithus huxleyi. Physiol. Plantarum, 18: 138–145.Google Scholar
  172. Paasche, E. 1966. Action spectrum of coccolith formation. Physiol Plantarum, 19: 770–779.Google Scholar
  173. Parke, M., and I. Adams. 1960. The motile (Crystallolithus hyalinus Gaardner and Markali) and non-motile phase in the life history of Coccolithus pelagicus (Wallich) Schiller. J. Mar. Biol. Ass. U.K., 39: 263–274.Google Scholar
  174. Pautard, F. G. E. 1958. Bone salts in unicellular organisms. Biochim. Biophys. Acta, 28: 514–520.PubMedGoogle Scholar
  175. Pautard, F. G. E. 1959. Hydroxyapatite as a developmental feature of Spirostomum ambiguum. Biochim. Biophys. Acta, 35: 33–46.PubMedGoogle Scholar
  176. Pautard, F. G. E. 1960. Calcification in unicellular organisms. In Calcification in Biological Systems. Sognnaes, R. F., ed. Washington, Amer. Ass. Advance. Sci.Google Scholar
  177. Pautard, F. G. E. 1962. The molecular-biologic background to the evolution of bone. Clin. Orthop., 24: 230–244.PubMedGoogle Scholar
  178. Pautard, F. G. E. 1963. Mineralization of keratin and its comparison with the enamel matrix. Nature (London), 199: 531–535.Google Scholar
  179. Pautard, F. G. E. 1966. A biomolecular survey of calcification. In Calcified Tissues. Fleish, H., Blackwood, H. J. J., and Owen, M., eds. New York, Springer-Verlag New York, Inc.Google Scholar
  180. Pine, L., and J. R. Overman. 1963. Determination of the structure and composition of the “sulphur granules” of Actinomyces bovis. J. Gen. Microbiol., 32: 209–223.PubMedGoogle Scholar
  181. Pliny. Book 36/81. Trans, into English by Eicholtz, D. E. London, William Heinemann, Ltd., 1962, p. 63.Google Scholar
  182. Policard, A. 1929a. La micro-incineration des cellules et des tissues. Protoplasma (Wien), 7: 464–481.Google Scholar
  183. Policard, A. 1929b. Application de la méthode de la micro-incineration a l’étude des vorticelles. Arch. Anat. Micr. Morph. Exp., 25: 445–450.Google Scholar
  184. Policard, A. 1942. Twenty years of microincineration. Cytological results. J. Roy. Micr. Soc., 62: 25–35.Google Scholar
  185. Pollack, H. 1928. Micrurgical studies in cell physiology. VI. Calcium ions in living protoplasm. J. Gen. Physiol., 11: 539–545.PubMedGoogle Scholar
  186. Powell, J. F., and R. E. Strange. 1953. Biochemical changes occurring during the germination of bacterial spores. Biochem. J., 54: 205–209.PubMedGoogle Scholar
  187. Powell, J. F., and R. E. Strange. 1956. Biochemical changes occurring during sporulation in Bacillus species. Biochem. J., 63: 661–668.PubMedGoogle Scholar
  188. Pringsheim, E. G. 1955. Kleine Mitteilungen liber Flagellaten und Algen. I. Algenortige Chrysophyceen in Reinkultur. Archiv. Mikrobiol., 21: 401–410.Google Scholar
  189. Quinaux, N., and L. J. Richelle. 1967. X-ray diffraction and infrared analysis of bone specific gravity fractions in the growing rat. Israel J. Med. Sci., 3: 677–690.Google Scholar
  190. Randall, J. T. 1957. The fine structure of the protozoan, Spirostomum ambiguum. Symp. Soc. Exp. Biol., 10: 185–198.Google Scholar
  191. Raup, D. M. 1965. Crystal orientations in the echinoid apical system. J. Paleontol., 39: 934–951.Google Scholar
  192. Reimann, B. E. F. 1964. Deposition of silica inside a diatom cell. Exp. Cell. Res., 34: 605–608.PubMedGoogle Scholar
  193. Reimann, B. E. F., J. C. Lewin, and B. E. Volcani. 1965. Studies on the biochemistry and fine structure of silica shell formation in diatoms. I. The structure of the cell wall of Cylindrotheca fusiformis, Reiman and Lewin. J. Cell Biol., 24: 39–55.PubMedGoogle Scholar
  194. Rhumbler, L. 1888. Die verschiedenen Cystenbildungen und die Entwicklungsgeschichte der holotrichen Infusoriengattung Colpoda. Zeit. Wiss. Zool., 46: 549–601.Google Scholar
  195. Rizzo, A. A., G. R. Martin, D. B. Scott, and S. S. Mergenhagen. 1962. Mineralization of bacteria. Science, 135: 439–441.PubMedGoogle Scholar
  196. Rizzo, A. A., D. E. Scott, and H. A. Bladen. 1963. Calcification of oral bacteria. Ann. N.Y. Acad. Sci., 109: 14–22.PubMedGoogle Scholar
  197. Rode, L. J., and J. W. Foster. 1966a. Influence of exchangeable ions on the germinability of bacterial spores. J. Bact., 91: 1582–1588.Google Scholar
  198. Rode, L. J., and J. W. Foster. 1966b. Quantitative aspects of exchangeable calcium in spores of Bacillus magaterium. J. Bact., 91: 1589–1593.Google Scholar
  199. Sachs, I. B. 1956. The chemical nature of the cyst membrane of Pelomyxa illinoisensis. Trans. Amer. Micr. Soc., 45: 304–313.Google Scholar
  200. Said, R. 1951. Preliminary note on the spectroscopic distribution of elements in the shells of some recent calcareous Foraminifera. Cushman Found. Foram. Res. Contrib., 2: 11–13.Google Scholar
  201. Salton, M. R. J., and J. M. Ghuysen. 1960. Acteylhexosamine compounds enzymically re¬lated to Micrococcus lysodeikticus cell walls. III. The structure of di- and tetrasaccharides released from cell walls by lysozyme and Streptomyes F1 enzyme. Biochim. Biophys. Acta, 45: 355–371.PubMedGoogle Scholar
  202. Schaeffer, A. A. 1919. Excretion of crystals in ameba. Anat. Ree., 15: 347.Google Scholar
  203. Schaudinn, F. 1899. Untersuchungen über den Generationswechsel von Trichosphaerium sieboldii. Sehn. Abhandl. Akad. Wiss. ( Berlin ), 1–93.Google Scholar
  204. Schewiakoff, W. 1894. Über die Natur der sogenannten Exkretkörner der Infusorien. Ziet. Wiss. Zool., 58: 32–56.Google Scholar
  205. Schmidt, W. J. 1924. Die Bausteine des Tierkörpers in polarisierten Lichte. Bonn, F. Cohen.Google Scholar
  206. Schubotz, H. 1905. Beitrage auf Kenntnis der A. blattae [Butschli] und A. proteus (Pali.). Arch. Protistenk., 6: 1–46.Google Scholar
  207. Scott, G. H. 1930. Sur la disposition des constituants minéraux du noyaux pendant la mitose. C.R. Acad. Sci. (Paris), 190: 1323–1324.Google Scholar
  208. Scott, G. H. 1932. Topographical similarities between materials revealed by ultraviolet light photomicrography of living cells and by micro-incineration. Science, 76: 148–150.PubMedGoogle Scholar
  209. Scott, G. H., and E. S. Horning. 1932. The structure of opalinids, as revealed by the technique of micro-incineration. J. Morph., 53: 381–388.Google Scholar
  210. Shelanski, M. L., and E. W. Taylor. 1967. Isolation of protein subunit from microtubules. J. Cell Biol., 34: 549–554.PubMedGoogle Scholar
  211. Slama, D. C. 1954. Arenaceous tests in the Foraminifera—an experiment. Micropaleontologist, 8: 33–34.Google Scholar
  212. Slepecky, R., and J. W. Foster. 1959. Alterations in metal content of spores of Bacillus megaterium and the effect on spore production. J. Bact., 78: 117–123.PubMedGoogle Scholar
  213. Smith, N. R. 1926. Report on bacterial examination of “chalky mud” and sea-water from the Bahama Banks. Carnegie Inst., Yearbook, Wash., 23: 67–72.Google Scholar
  214. Sorby, H. C. 1861. On the organic origin of the so-called ‘crystalloids’ of the chalk. Ann. Mag. Nat. Hist., 8: 193–200.Google Scholar
  215. Strabo. Geography 17/34. Trans, into English by Jones, H. L. London, William Heinemann, Ltd., 1932, p. 95.Google Scholar
  216. Sugiyama, H. 1951. Studies on factors affecting the heat resistance of spores of Clostridium botulinium. J. Bact., 62: 81–95.PubMedGoogle Scholar
  217. Switzer, G., and A. J. Boucot. 1955. The mineral composition of some microfossils. J. Paleontol., 29: 525–533.Google Scholar
  218. Takazoe, I., Y. Kurahashi, and S. Takuma. 1963. Electron microscopy of intracellular miner-alization of oral filamentous microorganisms in vitro. J. Dent. Res., 42: 681–685.PubMedGoogle Scholar
  219. Takazoe, I., Y., and T. Nakamura. 1965. The relation between metachromatic granules and intracellular calcification of Bacterionema matruchotii Tokyo. Dent. Col., 6: 29–42.Google Scholar
  220. Tarlo, L. B. H. 1964. The origin of bone. In Bone and Tooth. Blackwood, H. J. J., ed. Oxford, Pergamon Press, Inc.Google Scholar
  221. Termine, J. D. 1966. Amorphous calcium phosphate: The second mineral of bone. Ph.D. Thesis, Cornell University.Google Scholar
  222. Termine, J. D., and A. S. Posner. 1967a. Infra red analysis of rat bone: Age dependency of amorphous and crystalline mineral fractions. Science, 153: 1523–1525.Google Scholar
  223. Termine, J. D., and A. S. Posner. 1967b. Amorphous/crystalline interrelationships in bone mineral. Calcif. Tissue. Res., 1: 8–23.Google Scholar
  224. Thomas, R. S. 1964. Ultrastructural localization of mineral matter in bacterial spores by microincineration. J. Cell Biol., 23: 113–133.PubMedGoogle Scholar
  225. Tilney, L. G., and K. R. Porter. 1967. Studies on the microtubules in heliozoa. II. The effect of low temperature on these structures in the formation and maintenance of axopodia. J. Cell Biol., 34: 327–344.PubMedGoogle Scholar
  226. Tinelli, R. 1955. Étude de la biochemie de la sporulation chez Bacillus megaterium. I. Composition des spores obtenues par carence des différents substrats carbonés. Ann. Inst. Pasteur, (Paris) 88: 212–216.Google Scholar
  227. Todd, R., and P. Blackmon. 1956. Calcite and aragonite in Foraminifera. J. Paleontol., 30: 270–290.Google Scholar
  228. Tokuyasu, K., and E. Yamada. 1959. Fine structure of Bacillus subtilis. II. Sporulation progress. J. Biophys. Biochem. Cytol., 5: 129–134.PubMedGoogle Scholar
  229. Towe, K. M. 1967a. Echinoderm calcite: Single crystal or polycrystalline aggregate. Science, 157: 1047–1050.Google Scholar
  230. Towe, K. M. 1967b. Wall structure and cementation in Halophragmoides canariensis. Cushman Found. Foram. Res. Contrib., 18: 147–151.Google Scholar
  231. Towe, K. M., and R. Cifelli. 1967. Wall ultrastructure in the calcareous Foraminifera: Crystallographic aspects and a model for calcification. J. Paleontol., 41: 442–462.Google Scholar
  232. Travis, D. F. 1963. Structural features of mineralization from tissues to macromolecular levels of organisation in the decapod Crustacea. Ann. N.Y. Acad Sei., 109: 177–245.Google Scholar
  233. Troelson, J. C. 1955. On the value of aragonite tests in the classification of the Rotaliidea. Cushman Found. Foram. Res. Contrib., 6: 50–51.Google Scholar
  234. Vincent, J. M. 1962. Influence of calcium and magnesium on the growth of Rhizobium. J. Gen. Microbiol., 28: 653–663.PubMedGoogle Scholar
  235. Vincent, J. M., and J. R. Colburn. 1961. Cytological abnormalities in Rhizobium trifolii due to deficiency of calcium and magnesium. Aust. J. Sci., 23: 269–270.Google Scholar
  236. Vinogradov, A. P. 1953. The elementary chemical composition of marine organisms. Sears Foundation for Marine Research, New Haven, Yale University Press.Google Scholar
  237. Vintner, V. 1956. Sporulation of bacilli. III. Transference of calcium to cells and decrease in proteolytic activity in the medium in the process of sporulation of Bacillus megaterium. Cs. Mikrobiol., 1: 145–150.Google Scholar
  238. Vintner, V. 1957. The effect of cystine upon spore formation by Bacillus megaterium. J. Appl. Bact., 20: 325–332.Google Scholar
  239. Von Stosch, H. A. 1955. Ein morphologischer Phasenwechsel bei einer Coccolithophoride. Naturwissenschaften, 42: 423.Google Scholar
  240. Von Stosch, H. A. 1958. Der Geiselapparat einer Coccolithophoride. Naturwissenschaften, 45: 140–141.Google Scholar
  241. Wada, K. 1961. Crystal growth of molluscan shells. Bull. Natl. Pearl. Res. Lab., 7: 705–828.Google Scholar
  242. Wallich, G. C. 1861. Remarks on some novel phases of organic life, and on the boring powers of minute annelids, at great depth in the sea. Ann. Mag. Nat. Hist., 8: 52–58.Google Scholar
  243. Warth, A. D., D. F. Ohye, and W. C. Murrell. 1963. The composition and structure of bacterial spores. J. Cell Biol., 16: 570–592.Google Scholar
  244. Wasserman, B. H., I. D. Mandel, and B. M. Levy. 1958. In vitro calcification of dental calculus. J. Periodont., 29: 144–147.Google Scholar
  245. Watabe, N. 1965. Studies on shell formation. XI. Crystal-matrix relationships in the inner layer of mollusk shells. J. Ultrastruct. Res., 12: 351–370.PubMedGoogle Scholar
  246. Watabe, N. 1967. Crystallographic analysis of the coccolith of Coccolithus huxleyi. Calcif. Tiss. Res., 1: 114–121.Google Scholar
  247. Watabe, N., and K. M. Wilbur. 1966. Effects of temperature on growth, calcification and coccolith form in Coccolithus huxleyi (Coccolithinae). Limnol. Oceanogr., 11: 567–575.Google Scholar
  248. West, C. D. 1937. Note on the crystallography of the echinoderm skeleton. J. Paleontol., 11: 458–459.Google Scholar
  249. Wetzel, A. 1925. Vergleichende cytologische Untersuchungen an ciliaten. Arch. Protistenk., 51: 209–304.Google Scholar
  250. Wilbur, K. M., and N. Watabe. 1963. Experimental studies on calcification in molluscs and the alga Coccolithus huxleyi. Ann. N.Y. Acad. Sci., 109: 82–112.PubMedGoogle Scholar
  251. Williamson, W. C. 1858. On the Recent Foraminifera of Great Britain. London, Ray Society Publications.Google Scholar
  252. Wood, A. 1949. The structure of the wall of the test in the Foraminifera; its value in classification. Geol. Soc. London Quart. J., 104: 229–255.Google Scholar
  253. Wrzesniowski, A. 1870. Beobachtungen über Infusorien aus der Umgebung von Warshau. Zeit. Wiss. Zool., 20: 467–511.Google Scholar
  254. Young, I. E., and P. C. Fitz-James. 1962. Chemical and morphological studies of bacterial spore formation. IV. The development of spore refractility. J. Cell Biol., 12: 115–133.PubMedGoogle Scholar
  255. Yu, T. C., and R. O. Sinhuber. 1955. Stimulatory effect of calcium on the growth of Lactobacillus fermenti. Proc. Soc. Exp. Biol. Med., 88: 238–240.PubMedGoogle Scholar
  256. Zander, H. A., S. P. Hazen, and D. B. Scott. 1960. Mineralization of dental calculus. Proc. Soc. Exp. Biol. Med., 103: 257–260.PubMedGoogle Scholar
  257. Zo Bell, C. E. 1946. Marine Microbiology. Waltham, Mass., Chronica Botanica Company.Google Scholar

Copyright information

© Meredith Corporation 1970

Authors and Affiliations

  • Frederick G. E. Pautard
    • 1
  1. 1.Mineral Metabolism Research UnitThe General InfirmaryLeedsEngland

Personalised recommendations