Advertisement

The Inorganic Composition of Bones and Teeth

  • I. Zipkin

Abstract

Some 50 to 70 percent of adult cortical bone is inorganic in nature. It is apatitic in structure in that calcium and phosphate exist in one or more crystallographic varieties which, on x-ray diffraction analysis, give patterns similar to that shown by Ca10(PO4)6(OH)2. Phosphate may be substituted by carbonate in vivo, and hydroxyl may be replaced by fluoride. The proportions of these substituents in living bone alters the resolution of the x-ray diffraction pattern, indicating changes in crystal size, perfection, strain, or a combination of these characteristics. A number of ions are presumed to be incapable of occupying positions within the crystal lattice. Chief among these is citrate. Other ions believed to be adsorbed in vivo to the crystal surface are magnesium, strontium, sodium, potassium, and a number of trace elements such as zinc, manganese, and molybdenum, whose presence has been determined spectrographically. The degree of resolution of the characteristic peaks of the x-ray diffraction pattern of cortical bone varies somewhat among different species and is enhanced by the incorporation of fluoride.

Keywords

Fluoride Concentration Mineralized Tissue Fluoride Content Adult Bone Citrate Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agna, J. W., H. C. Knowles, Jr., and B. Alverson. 1958. The mineral content of normal human bone. J. Clin. Invest., 37: 1357PubMedGoogle Scholar
  2. Armstrong, W. D., and L. Singer. 1956. In vitro uptake and exchange of bone citrate. In Bone Structure and Metabolism. Wolstenholme, G. E., and O’Connor, C. M., eds. Ciba Foundation Symposium, Boston, Little, Brown and Company, p. 103.Google Scholar
  3. Armstrong, W. D., and L. Singer. 1965. Composition and constitution of the mineral phase of bone. Clin. Orthop., 38: 179.PubMedGoogle Scholar
  4. Bawden, J. W., A. S. Wolkoff, and C. E. Flowers, Jr. 1964. Placental transfer of F18 in sheep. J. Dent. Res., 43: 678.PubMedGoogle Scholar
  5. Bergstrom, W. H., and W. M. Wallace. 1954. Bone as a sodium and potassium reservoir. J. Clin. Invest., 33: 867.PubMedGoogle Scholar
  6. Blayney, J. R., and I. N. Hill. 1964. Evanston dental caries study. XXIV. Prenatal fluorides- value of water-borne fluorides during pregnancy. J. Amer. Dent. Ass., 69: 291.PubMedGoogle Scholar
  7. Boden, J. 1960. The citric acid content of ox bone. Arch. Oral Biol., 2: 319.Google Scholar
  8. Brown, W. E. 1966. Crystal growth of bone mineral. Clin. Orthop., 44: 205.PubMedGoogle Scholar
  9. Brown, W. E., J. P. Smith, J. R. Lehr, and A. W. Frazier. 1962. Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature (London), 196: 1050.Google Scholar
  10. Brudevold, F. 1962. Chemical composition of the teeth in relation to caries. In Chemistry and Prevention of Dental Caries. Sognnaes, R. F., ed. Springfield, Charles C Thomas, Publisher, p. 32.Google Scholar
  11. Brudevold, F., H. G. McCann, and P. Gron. 1965. Caries resistance as related to the chemistry of enamel. In Caries Resistant Teeth. Wolstenholme, G. E. W., and O’Connor, M., eds. Ciba Foundation Symposium, Boston, Little, Brown and Company, p. 121.Google Scholar
  12. Brudevold, F., and R. Soremark. 1967. Chemistry of the mineral phase of enamel. In Structure and Chemical Organization of Teeth. Miles, A. E. W., ed. New York, Academic Press, Inc., Vol. 2, p. 247.Google Scholar
  13. Brudevold, F., L. T. Steadman, and F. A. Smith. 1960. Inorganic and organic components of tooth structure. In The Metabolism of Oral Tissues, Ann. N.Y. Acad. Sci., 85: 110.PubMedGoogle Scholar
  14. Call, R. A., et al. 1965. Histological and chemical studies in man on the effects of fluoride. Pub. Health Rep., 80: 529.Google Scholar
  15. Cartier, P. 1949a. Variations des anions organiques de l’os (citrates et lactates) au cours de la croissance. C. R. Soc. Biol. (Paris), 143: 37.Google Scholar
  16. Cartier, P. 1949b. Répartition des anions organiques dans les os longs. C. R. Soc. Biol. (Paris), 143: 631.Google Scholar
  17. Dallemagne, M. J. 1964. Phosphate and carbonate in bone and teeth. In First European Bone and Tooth Symposium. Blackwood, H. J. J., ed. New York, Pergamon Press, Inc., p. 171.Google Scholar
  18. Davies, R. E., H. L. Kornberg, and G. M. Wilson. 1952. The determination of sodium in bone. Biochem. J., 52: 15.Google Scholar
  19. Dickens, F. 1941. The citric acid content of animal tissues with reference to its occurrence in bone and tumor. Biochem. J., 35: 1011.PubMedGoogle Scholar
  20. Dickerson, J. W. T. 1962a. The effect of development on the composition of a long bone of the pig, rat and fowl. Biochem. J., 82: 47.Google Scholar
  21. Dickerson, J. W. T. 1962b. Changes in the composition of the human femur during growth. Biochem. J. 82: 56.Google Scholar
  22. Dixon, T. F., and H. R. Perkins. 1956. Citric acid and bone. In The Biochemistry and Physiology of Bone. Bourne, G. H., ed. New York, Academic Press, Inc., p. 309.Google Scholar
  23. Duckworth, J., and R. Hill. 1953. The storage of elements in the skeleton. Nutr. Abstr. Rev., 23: 1.Google Scholar
  24. Edelman, I. S., A. A. James, H. Badin, and F. D. Moore. 1954. Electrolyte composition of bone and the penetration of radiosodium and dentenim oxide into dog and human bone. J. Clin. Invest., 33: 122.PubMedGoogle Scholar
  25. Elliott, J. C. 1963. Some observations on the crystal chemistry of carbonate containing apatites. Advances in fluorine research and dental caries prevention. Proceedings of the 9th Congress of the European Organization for Research on Fluorine and Dental Caries Prevention, 1962. Hardwick, J. L., Dustin, J. P., and Held, H. R., eds. New York, Pergamon Press, Inc., p. 277.Google Scholar
  26. Follis, R. H., Jr. 1952. Inorganic composition of human rib with and without marrow elements. J. Biol. Chem., 194: 223.PubMedGoogle Scholar
  27. Forbes, G. B. 1959. Bone sodium and Na-2 exchange: Relation to water content. P.S.E.B.M., 102: 248.Google Scholar
  28. Forbes, G. B., G. L. Mizner, and A. Lewis. 1957. Effect of age on radio-sodium exchange in bone. Amer. J. Physiol., 190: 152.PubMedGoogle Scholar
  29. Forbes, G. B., R. B. Tobin, and A. Lewis. 1959. Response of bone sodium to acute changes in extracellular fluid composition (cat). Amer. J. Physiol., 196: 69.PubMedGoogle Scholar
  30. Freeman, S. 1960. Citrate metabolism with special reference to calcium and bone. In Bone as a Tissue. Rodahl, K., Nicholson, J. T., and Brown, E. M., Jr., eds. New York, McGraw-Hill Book Company, Inc., p. 314.Google Scholar
  31. Gedalia, I., A. Brzezinski, N. Portuguese, and B. Bercovici. 1964. The fluoride content of teeth and bones of human foetuses. Arch. Oral Biol., 9: 331.PubMedGoogle Scholar
  32. Gedalia, I., J. Menczel, S. Antebi, H. Zuckerman, and Z. Pinchevski. 1965a. Calcium and phosphorus content of ash of bones and teeth of human fetuses in relation to fluoride content of drinking water. P.S.E.B.M., 119: 694.Google Scholar
  33. Gedalia, I., I. Zipkin, H. Zuckerman, I. Gax, and H. Leventhal. 1967. The citrate content of teeth and bones of human foetuses. Arch. Oral Biol., 12: 545.PubMedGoogle Scholar
  34. Gedalia, I., H. Zuckerman, and H. Leventhal. 1965b. Fluoride content of teeth and bones of human fetuses: In areas with about 1 ppm of fluoride in drinking water. J. Amer. Dent. Ass., 71: 1121.Google Scholar
  35. Gray, J. A., and M. D. Francis. 1963. Physical chemistry of enamel dissolution. In Mechanisms of Hard Tissue Destruction. Sognnaes, R. F., ed. Amer. Ass. Advance. Sci., Publ. No. 75, Washington, D.C., p. 213.Google Scholar
  36. Gedalia, I., M. D. Francis, and W. J. Griebstein. 1962. Chemistry of enamel dissolution. In Chemistry and Prevention of Dental Caries. Sognnaes, R. F., ed. Springfield, Ill., Charles C Thomas, Publisher, p. 164.Google Scholar
  37. Griffith, F. D., H. E. Parker, and J. C. Rogler. 1964. Effect of dietary magnesium and fluoride on citric acid content of chick bones. P.S.E.B.M., 116: 622.Google Scholar
  38. Hartles, R. L., and A. G. Leaver. 1960. Citrate in mineralized tissues. I. Citrate in human dentine. Arch. Oral Biol., 1: 297.PubMedGoogle Scholar
  39. Hartles, R. L., and A. G. Leaver. 1961a. Citrate in mineralized tissues. III. The effect of purified diets low in calcium and vitamin D on the citrate content of the rat femur. Arch. Oral Biol., 5: 38.Google Scholar
  40. Hartles, R. L., and A. G. Leaver. 1961b. Citrate in mineralized tissues. IV. The relation of vitamin D intake and calcium nutrition to the citrate content of the rat femur. Arch. Oral Biol., 5: 274.Google Scholar
  41. Hartles, R. L., and A. G. Leaver. 1962. Citrate in mineralized tissues. V. The effect of purified diets low in phosphates, adequate in calcium and containing varying amounts of vitamin D on the citrate content of the rat femur. Arch. Oral Biol., 7: 557.PubMedGoogle Scholar
  42. Hartles, R. L., A. G. Leaver, and J. T. Triffitt. 1963. Citrate in mineralized tissues. VI. The effects of dietary rehabilitation with calcium or with vitamin D in rats previously maintained on a diet deficient in both calcium and vitamin D. Arch. Oral Biol., 8: 657.PubMedGoogle Scholar
  43. Hartles, R. L., A. G. Leaver, and J. T. Triffitt. 1964. Citrate in mineralized tissues. VII. The effects of rehabilitation with phosphates or with phosphate and vitamin D in rats previously maintained on diets deficient in both. Arch. Oral Biol., 9: 725.PubMedGoogle Scholar
  44. Havivi, E., and K. Guggenheim. 1966. The effect of copper and fluoride on the bone of mice treated with parathyroid hormone. J. Endocr., 36: 357.PubMedGoogle Scholar
  45. Hirschman, A., and A. E. Sobel. 1965. Composition of the mineral deposited during in vitro calcification in relation to the fluid phase. Arch. Biochem., 110: 237.PubMedGoogle Scholar
  46. Hudson, J. T., G. K. Stookey, and J. C. Muhler. 1967. The placental transfer of fluoride in the guinea pig. Arch. Oral Biol., 12: 237.PubMedGoogle Scholar
  47. Jackson, D., and S. M. Weidmann. 1958. Fluoride in human bone related to age and water supply of different regions. J. Path. Bact., 76: 451.PubMedGoogle Scholar
  48. Jenkins, G. N., and R. L. Speirs. 1954. Some observations on the fluoride concentration in dental tissues. J. Dent. Res., 33: 734.Google Scholar
  49. Johansen, E. 1963. Ultrastructural and chemical observations on dental caries. In Mechanisms of Hard Tissue Destruction. Sognnaes, R. F., ed. Amer. Ass. Advance. Sci., Washington, D.C., Publ. No. 75, p. 187.Google Scholar
  50. Johansen, E. 1965. Comparison of the ultrastructure and chemical composition of sound and carious enamel from human permanent teeth. In Tooth Enamel. Stack, M. V., and Fearnhead, R. W., eds. Bristol, John Wright and Sons, Ltd., p. 177.Google Scholar
  51. Kuhl, Von G., and W. H. Nebergall. 1963. Hydrogen Phosphat und Carbonatapatit. Z. Anorg. Allg. Chem., 324: 313.Google Scholar
  52. Leaver, A. G., J. E. Eastoe, and R. L. Hartles. 1960. Citrate in mineralized tissues. II. The isolation from human dentine of a complex containing citric acid and a peptide. Arch. Oral Biol., 2: 120.PubMedGoogle Scholar
  53. Leaver, A. G., J. T. Triffitt, and R. L. Hartles. 1963. Relative levels of citric acid and lactic acid in certain mineralized tissues. Arch. Oral Biol., 8: 23.PubMedGoogle Scholar
  54. Leicester, H. 1949. Biochemistry of Teeth. St. Louis, C. V. Mosby Co.Google Scholar
  55. Likins, R. C., A. S. Posner, and G. Pakis. 1964. Effect of fluoride on crystal texture and radiocalcium uptake of rat bone. P.S.E.B.M., 115: 511.Google Scholar
  56. Likins, R. C., R. O. Scow, I. Zipkin, and A. C. Steere. 1959. Deposition and retention of fluoride and radiocalcium in the growing rat. Amer. J. Physiol., 197: 74.Google Scholar
  57. Long, C., ed. 1961. Biochemists’ Handbook. Princeton, D. Van Nostrand Co., Inc., p. 716.Google Scholar
  58. Macgregor, J., and W. E. Brown. 1965. Blood:bone equilibrium in calcium homeostatis. Nature (London), 205: 359.Google Scholar
  59. Martin, D. J. 1948. The Evanston Dental Caries Study. I. Determination of fluorine in foods, bones, and teeth. J. Dent. Res., 27: 27.PubMedGoogle Scholar
  60. McCann, H. G., and F. A. Bullock. 1957. The effect of fluoride ingestion on the composition and solubility of mineralized tissues of the rat. J. Dent. Res., 36: 39.Google Scholar
  61. McClure, F. J., C. T. G. King, J. Derr, and A. L. Wilk. 1966. Major components of the primary and secondary dentition of miniature and duroc swine fed normal vs. low phosphorus diets. Arch. Oral Biol., 11: 253.PubMedGoogle Scholar
  62. McClure, F. J., and R. C. Likins. 1951. Fluorine in human teeth studied in relation to fluorine in the drinking water. J. Dent. Res., 30: 172.PubMedGoogle Scholar
  63. Menczel, J., et al. 1962. Comparative fixation of Sr89 and Ca45 by calcified tissues as related to fluoride induced changes in crystallinity. P.S.E.B.M., 110: 609.Google Scholar
  64. McClure, F. J., et al. 1963. Effect of a low fluoride diet on bone crystallinity and skeletal uptake of Ca45 in rats. P.S.E.B.M., 112: 128.Google Scholar
  65. Munro, D. S., R. S. Satoskar, and G. M. Wilson. 1957. The exchange of bone sodium with isotopes in rats. J. Physiol. (London), 139: 474.Google Scholar
  66. Neuman, W. F., and M. W. Neuman. 1953. The nature of the mineral phase of bone. Chem. Rev., 53: 1.Google Scholar
  67. Newesley, H. 1965 Über die Existenzbedingungen von Oktacalcium Phosphat, Whitlockit und Carbonatapatit. Deut. Zahnarzt Zeitschr., 20: 753.Google Scholar
  68. Nikiforuk, G., and R. M. Grainger. 1966. Fluoride-carbonate-citrate interrelations in enamel. In Tooth Enamel. Stack, M. V., and Fearnhead, R. W., eds. Bristol, J. Wright and Sons, Ltd., p. 26.Google Scholar
  69. Posner, A. S., J. M. Stutman, and E. L. Lippincott. 1960. Hydrogen bonding in calcium-deficient hydroxyapatites. Nature (London), 188: 486.Google Scholar
  70. Provenza, D. V. 1964. Oral Histology. Philadelphia, J. B. Lippincott Co.Google Scholar
  71. Pyke, R. E., W. G. Hoekstra, and P. H. Phillips. 1967. Effects of fluoride on magnesium deficiency in the guinea pig. J. Nutr., 92: 311.PubMedGoogle Scholar
  72. Richelle, L. J., C. Onkelinx, and J. P. Aubert. 1966. Bone mineral metabolism in the rat. In Calcified Tissues. 1965 Proceedings of the Third European Symposium on Calcified Tissues. New York, Springer-Verlag New York Inc.Google Scholar
  73. Rowles, S. L. 1967. Chemistry of the mineral phase of dentin. In Structural and Chemical Organization of Teeth. Miles, A. E. W., ed. New York, Academic Press, Inc., Vol. 2, p. 201.Google Scholar
  74. Selvig, K. A., and S. K. Selvig. 1962. Mineral content of human and seal cementum. J. Dent. Res., 41: 624.PubMedGoogle Scholar
  75. Selvig, K. A., and H. A. Zander. 1962. Chemical analysis and microradiography cementum and dentin from periodontally diseased human teeth. J. Periodont., 33: 303.Google Scholar
  76. Sicher, H., ed. 1966. Osborn’s Oral Histology and Embryology. St. Louis, C. V. Mosby Co.Google Scholar
  77. Singer, L., and W. D. Armstrong. 1962. Comparison of fluoride contents of human dentin and skeletal tissues. J. Dent. Res., 41: 154.Google Scholar
  78. Stutman, J. M., A. S. Posner, and E. L. Lippincott. 1962. Hydrogen bonding in the calcium phosphates. Nature (London), 193: 368.Google Scholar
  79. Swanson, W. W., and L. V. Iob. 1937. Mineral composition of the bone and cartilage of the human fetus. Amer. J. Dis. Child., 54: 1024.Google Scholar
  80. Tal, E., and K. Guggenheim. 1965. Effect of copper and manganese on calcification of bones of rats fed on meat. Mitr. Dieta, 7: 62.Google Scholar
  81. Taylor, T. G., and J. Kirkley. 1967. The relation between the fluoride, citrate, and carbonate contents of individual bones of the skeleton of the fowl. Calcif. Tissue Res., 1: 33.PubMedGoogle Scholar
  82. Selvig, K. A., and J. H. Moore. 1954. Skeletal depletion in hens laying on a low calcium diet. Brit. J. Nutr., 8: 112.Google Scholar
  83. Selvig, K. A., and J. H. Moore. 1956. The effect of calcium depletion on the chemical composition of bone minerals in laying hens. Brit. J. Nutr., 10: 250.Google Scholar
  84. Selvig, K. A., J. H. Moore, and F. Hertelendy. 1960. Variations in the mineral composition of individual bones of the skeleton of the domestic fowl. Brit. J. Nutr., 14: 491.Google Scholar
  85. Thunberg, T. 1948. Some information on the citric acid content of bone substance. Acta Physiol. Scand., 15: 38.PubMedGoogle Scholar
  86. Thunberg, T. 1949. The occurrence of citric acid in the shell substance of eggs of chickens, ducks, and geese. Acta Physiol. Scand., 17: 83.PubMedGoogle Scholar
  87. Thunberg, T. 1953. Occurrence and significance of citric acid in the animal organism. Physiol. Rev., 33: 1.PubMedGoogle Scholar
  88. Trautz, O. R. 1955. X-ray diffraction of biological and synthetic apatites. In Recent Advances in the Study of the Structure, Composition and Growth of Mineralized Tissues. Miner, R. W., ed. Ann. N.Y. Acad. Sci., 60: 696.Google Scholar
  89. Trautz, O. R. 1967. Crystalline organization of dental mineral. In Structural and Chemical Organization of Teeth. Miles, A. E. W., ed. New York, Academic Press, Inc., Vol. 2, p. 165.Google Scholar
  90. Weidmann, S. M., and H. J. Rogers. 1950. Studies on the skeletal tissues. I. The degree of calcification of selected mammalian bones. Biochem. J., 47: 493.Google Scholar
  91. Weidmann, S. M., and H. J. Rogers. 1958. Studies on the skeletal tissues. V. The influence of age upon the degree of calcification and the incorporation of 32p in bone. Biochem. J., 69: 338.PubMedGoogle Scholar
  92. Widdowson, E. M., and J. W. T. Dickerson. 1964. Chemical composition of the body. In Mineral Metabolism. Comar, C. L., and Bronner, F., eds. New York, Academic Press, Inc., Vol. 1, pp. 1–247.Google Scholar
  93. Winand, L., M. J. Dallemagne, and G. Duyckaerts. 1961. Hydrogen bonding in apatitic calcium phosphates. Nature (London), 190: 164.Google Scholar
  94. Winand, L., and M. J. Dallemagne. 1962. Hydrogen bonding in the calcium phosphates. (A reply to paper of Stutman Et al, 1962. Nature (London), 193:368.) Nature (London), 193: 369.Google Scholar
  95. Yardeni, J., I. Gedalia, and M. Kohn. 1963. Fluoride concentration of dental calculus, surface enamel, and cementum. Arch. Oral Biol., 3: 697.Google Scholar
  96. Yoon, S. H., F. Brudevold, F. A. Smith, and D. E. Gardner. 1965. Fluoride, calcium, phosphate, ash and water content of human dental pulp. J. Dent. Res., 44: 696.PubMedGoogle Scholar
  97. Zapanta-Legeros, R. 1965. Effect of carbonate on the lattice parameters of apatite. Nature (London), 206: 403.Google Scholar
  98. Zipkin, I. 1966. Chemical composition of bones, teeth, calculus, saliva, and the periodontium of the human. In The Science of Nutrition and Its Application in Clinical Dentistry, 2nd. ed. Nizel, A. E., ed. Philadelphia, W. B. Saunders Company.Google Scholar
  99. Zipkin, I. and W. L. Babeaux. 1965. Maternal transfer of fluoride. J. Oral Ther., 1: 652.Google Scholar
  100. Zipkin, I., E. D. Eanes, and J. L. Shupe. 1964. Effect of prolonged exposure to fluoride on the ash, fluoride, citrate, and crystallinity of bovine bone. Amer. J. Vet. Res., 25: 1595.Google Scholar
  101. Zipkin, I. and R. S. Gold. 1963a. The citrate content of teeth. P.S.E.B.M., 113: 580.Google Scholar
  102. Zipkin, I., R. C. Likins, and F. J. Mcclure. 1959. Deposition of fluoride, calcium, and phosphorus in experimental low-phosphorus rickets. J. Nutr., 67: 59.Google Scholar
  103. Zipkin, I., F. J. Mcclure, and W. A. Lee. 1960. Relation of the fluoride content of human bone in its chemical composition. Arch. Oral Biol., 2: 190.PubMedGoogle Scholar
  104. Zipkin, I., F. J. Mcclure, N. C. Leone, and W. A. Lee. 1958. Fluoride deposition in human bones after prolonged ingestion of fluoride in the drinking water. Pub. Health Rep., 73: 732.Google Scholar
  105. Zipkin, I., R. Schraer, H. Schraer, and W. A. Lee. 1963b. The effect of fluoride on the citrate content of the bones of the growing rat. Arch. Oral Biol., 8: 119.Google Scholar
  106. Zipkin, I., and R. O. Scow. 1956. Fluoride deposition in different segments of the tibia of the young growing rat. Amer. J. Physiol., 185: 81.PubMedGoogle Scholar
  107. Zipkin, I., L. Sokoloff, and P. D. Frazier. 1967. A study of the effect of fluoride on bone and osteoarthritis in mice. Israel J. Med. Sci., 3: 179.Google Scholar

Copyright information

© Meredith Corporation 1970

Authors and Affiliations

  • I. Zipkin
    • 1
  1. 1.School of DentistryThe University of California, San Francisco Medical CenterSan FranciscoUSA

Personalised recommendations