Matrices that Calcify

  • E. Schiffmann
  • G. R. Martin
  • E. J. Miller


A variety of organic matrices are able to initiate or accelerate the precipitation of calcium and phosphate ions from solution (Strates et al., 1957; Santanam, 1959; Bachra et al., 1959; Bachra and Sobel, 1959a; Glimcher et al., 1957; Glimcher, 1960) by a process called heterogeneous nucleation (Neuman and Neuman, 1958; Glimcher et al., 1961a; Taves, 1963). Since mineral is normally deposited extra-cellularly, these observations may help to explain the manner in which the mineral phase of bone is formed and localized. Many of these studies were carried out with collagenous matrices in which the collagen fibers were highly ordered (Strates and Neuman, 1958; Glimcher et al., 1957; Fleisch and Neuman, 1961). Therefore, it has been proposed, in analogy with nucleation phenomena in inorganic chemistry, that such organization is a necessary characteristic of a template which can influence the rate of crystal formation (Neuman and Neuman, 1958; Glimcher, 1960; Solomons et al., 1960; Glimcher et al., 1961a). In man, mineral is found associated with at least three clearly different protein matrices: bone collagen, the enamel protein, and aortic elastin. In the cases of collagen and enamel protein, calcification proceeds as a step in normal tissue development, although the process may vary with each matrix. The mineralization of elastin occurs later in life and appears to be a pathological process.


Amino Acid Composition Elastic Fiber Organic Matrix Collagen Molecule Elastin Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Astbury, W. T. 1940. Molecular structure of the fibers of the collagen group. J. Int. Soc. Leather Trades Chemists, 24: 69–92.Google Scholar
  2. S. Dickinson, and K. Bailey. 1935. The x-ray interpretation of denaturation and the structure of the seed globulins. Biochem. J., 29: 2351–2360.PubMedGoogle Scholar
  3. Ayer, J. P., G. M. Hass, and D. E. Philpott. 1958. Aortic elastic tissue. Arch. Path. (Chicago), 65: 519–544.Google Scholar
  4. Bachra, B. N., and A. E. Sobel. 1959a. Calcification. XXV. Mineralization of reconstituted collagen. Arch. Biochem., 85: 9–18.CrossRefGoogle Scholar
  5. Bachra, B. N., and A. E. Sobel. 1959b. Calcification. XXVII. Collagen transformation under influence of calcium and phosphate ions. Proc. Soc. Exp. Biol. Med., 102: 314–317.Google Scholar
  6. Bachra, B. N., A. E. Sobel, and J. W. Stanford. 1959. Calcification. XXIV. Mineralization of collagen and other fibers. Arch. Biochem., 84: 79–95.PubMedCrossRefGoogle Scholar
  7. Battistone, G. C., and G. W. Burnett. 1956. Studies on the composition of teeth. IV. The amino acid composition of human enamel protein. J. Dent. Res., 35: 260–262.PubMedCrossRefGoogle Scholar
  8. Bear, R. S. 1952. The structure of collagen fibrils. In Advance in Protein Chemistry. Anson. M. L., Bailey, K., and Edsall, J. T., eds. New York, Academic Press, Inc., Vol. 7, pp. 69–160.Google Scholar
  9. Betheil, J. J., and P. M. Gallop. 1960. Guanidination of lysine and hydroxy lysine in ichthyocol. Biochim. Biophys. Acta, 45: 598–600.CrossRefGoogle Scholar
  10. Block, R. J., M. K. Horwitt, and D. Bolling. 1949. Comparative protein chemistry. The composition of the proteins of human teeth and fish scales. J. Dent. Res., 28: 518–524.PubMedCrossRefGoogle Scholar
  11. Blumenthal, H. T., A. I. Lansing, and P. A. Wheeler. 1944. Calcification of the human aorta and its relation to intimal arteriosclerosis, aging and disease. Amer. J. Path., 20: 665–687.PubMedGoogle Scholar
  12. Boedtker, H., and P. Doty. 1956. The native and denatured states of soluble collagen. J. Amer. Chem. Soc., 78: 4267–4280.CrossRefGoogle Scholar
  13. Bonar, L. C., M. J. Glimcher, and G. L. Mechanic. 1965a. The molecular structure of the neutral-soluble proteins of embryonic bovine enamel in the solid state. J. Ultrastruct. Res., 13: 308–317.CrossRefGoogle Scholar
  14. Bonar, L. C., G. L. Mechanic, and M. J. Glimcher. 1965b. Optical rotatory dispersion studies of the neutral-soluble proteins of embryonic bovine enamel. J. Ultrastruct. Res., 13: 298–307.Google Scholar
  15. Bornstein, P., A. H. Kang, and K. A. Piez. 1966. The nature and location of intramolecular cross-links in collagen. Proc. Nat. Acad. Sci. U.S.A., 55: 417–424.CrossRefGoogle Scholar
  16. Bowes, J. H., and J. A. Moss. 1953. The reaction of fluorodinitrobenzene with a- and e-amino groups of collagen. Biochem. J., 55: 735–741.PubMedGoogle Scholar
  17. Boyd, E. S., and W. F. Neuman. 1951. The surface chemistry of bone. V. The ion binding properties of cartilage. J. Biol. Chem., 193: 243–251.PubMedGoogle Scholar
  18. Burgess, R. C., and C. M. Maclaren. 1965. Proteins in developing bovine enamel. In Tooth Enamel. Stack, M. V., and Fearnhead, R. W., eds. Bristol, John Wright and Sons, pp. 74–82.Google Scholar
  19. Cartier, P., and A. Lanzetta. 1961. Mineral constituents of calcified tissues. VIII. The bond between collagen and the bone salt. Bull. Soc. Chim. Biol. (Paris), 43: 981–992.Google Scholar
  20. Cartier, P., and J. Picard. 1955a. Mineralization of ossifiable cartilage. I. Mineralization of cartilage in vitro. Bull. Soc. Chim. Biol. (Paris), 37: 485–494.Google Scholar
  21. Cartier, P., and J. Picard. 1955b. Mineralization of ossifiable cartilage. III. Mechanism of the AT Pase reaction in cartilage. Bull. Soc. Chim. Biol. (Paris), 37: 1159–1168.Google Scholar
  22. Deakins, M. 1942. Changes in the ash, water, and organic content of pig enamel during calcification. J. Dent. Res., 21: 429–435.CrossRefGoogle Scholar
  23. Deakins, M., and J. F. Volker. 1941. Amount of organic matter in enamel from several types of human teeth. J. Dent. Res., 20: 117–121.CrossRefGoogle Scholar
  24. Eastoe, J. E. 1960. Organic matrix of tooth enamel. Nature (London), 187: 411–412.CrossRefGoogle Scholar
  25. Eastoe, J. E., 1963a. The amino acid composition of proteins from the oral tissues. II. The matrix proteins in dentin and enamel from developing human deciduous teeth. Arch. Oral Biol., 8: 633–652.CrossRefGoogle Scholar
  26. Eastoe, J. E., 1963b. The amino acid composition of proteins from the oral tissues. I. A comparison of human oral epithelium, epidermis, and nail proteins. Arch. Oral Biol., 8: 449–458.CrossRefGoogle Scholar
  27. Eichel, B., S. W. Morgenstern, and A. E. Sobel. 1957. In vitro calcification of mammalian aorta and rachitic bone. Int. Ass. Dent. Res., 35th General Meeting.Google Scholar
  28. Eisenstein, R., R. E. Trueheart, and G. M. Hass. 1960. Pathogenesis of abnormal tissue calcifications. In Calcification in Biological Systems. Sognnaes, R. F., ed. Washington, D.C., Publ. No. 64, Amer. Ass. Advance. Sci., pp. 281–305.Google Scholar
  29. Engstrom, A., and R. Zetterstrom. 1951. Studies on the ultrastructure of bone. Exp. Cell Res., 2: 268–274.CrossRefGoogle Scholar
  30. Fearnhead, R. W. 1963. Recent observations on the structure of developing enamel. Arch. Oral Biol., Suppl. 8: 257–264.Google Scholar
  31. Fearnhead, R. W., 1965. The insoluble organic component of human enamel. In Tooth Enamel. Stack, M. V., and Fearnhead, R. W., eds. Bristol, John Wright and Sons, pp. 127–131.Google Scholar
  32. Fels, I. G. 1959. Radioautographic study of aortic plaque formation. Circ. Res., 7: 693–699.PubMedGoogle Scholar
  33. Fleisch, H., S. Bisaz, and R. Russell. 1965. Activating effect of lead on precipitation of calcium phosphate. Proc. Soc. Exp. Biol. Med., 118: 882–884.PubMedGoogle Scholar
  34. Fleisch, H., J. Maerki, and R. G. G. Russell. 1966. Effect of pyrophosphate on dissolution of hydroxyapatite and its possible importance in calcium homeostasis. Proc. Soc. Exp. Biol. Med., 122: 317–320.PubMedGoogle Scholar
  35. Fleisch, H., and W. F. Neuman. 1960. Quantitative aspects of nucleation in calcium phosphate precipitation. J. Amer. Chem. Soc., 82: 996–997.CrossRefGoogle Scholar
  36. Fleisch, H., and W. F. Neuman. 1961. Mechanisms of calcification: Role of collagen, polyphosphates, and phosphatase. Amer. J. Physiol., 200: 1296–1300.Google Scholar
  37. Frank, R. N., and J. Nalbandian. 1963. Aspects ultrastructuraux du mécanisme de la calcification. Arch. Oral Biol., Suppl. 8: 95–109.Google Scholar
  38. Frank, R. N., R. F. Sognnaes, and R. Kern. 1960. Calcification of dental tissues with special reference to enamel ultrastructure. In Calcification in Biological Systems. Sognnaes, R. F., ed. Washington, D.C. Amer. Ass. Advance. Sci., pp. 163–202.Google Scholar
  39. Franzblau, C., F. M. Sinex, B. Faris, and R. Lampidis. 1965. Identification of a new cross-linking amino acid in elastin. Biochem. Biophys. Res. Commun., 21: 575–581.PubMedCrossRefGoogle Scholar
  40. Freudenberg, E., and P. Gyorgy. 1921. The binding of calcium by animal tissue. III. Biochem. Zeit., 118: 50–54.Google Scholar
  41. Fullmer, H. M. 1966. Connective tissues and changes with certain oral diseases. In Environmental Variables in Oral Disease. Kreshover, S. J., and McClure, F. J., eds. Washington, D.C., Publ. No. 81, Amer. Ass. Advance. Sci., pp. 171–199.Google Scholar
  42. Glas, J. E., and K. A. Omnell. 1960. Studies on the ultrastructure of dental enamel. I. Size and shape of apatite crystallites as deduced from x-ray diffraction data. J. Ultrastruct. Res., 3: 334–344.PubMedCrossRefGoogle Scholar
  43. Glimcher, M. J. 1959. Molecular biology of the mineralized tissues with particular reference to bone. Revs, of Modern Physics, 31: 359–393.CrossRefGoogle Scholar
  44. Glimcher, M. J. 1960. Organic matrices in mineralization. In Calcification in Biological Systems. Sognnaes, R. F., ed. Washington, D.C., Amer. Ass. Advance. Sci., pp. 421–487.Google Scholar
  45. Glimcher, M. J., L. C. Bonar, and E. J. Daniel. 1961a. The molecular structure of the protein matrix of bovine dental enamel. J. Molec. Biol., 3: 541–546.CrossRefGoogle Scholar
  46. Glimcher, M. J., C. J. Francois, L. Richards, and S. M. Krane. 1964a. The presence of organic phosphorus in collagens and gelatins. Biochim. Biophys. Acta, 93: 585–602.CrossRefGoogle Scholar
  47. Glimcher, M. J., U. A. Friberg, and P. T. Levine. 1964b. The isolation and amino acid composition of the enamel proteins of erupted bovine teeth. Biochem. J., 93: 202–210.Google Scholar
  48. Glimcher, M. J., U. A. Friberg, S. Orloff, and J. Gross. 1966. Role of the inorganic crystals in the solubility characteristics of collagen in lathyritic bone. J. Ultrastruct. Res., 15: 74–86.PubMedCrossRefGoogle Scholar
  49. Glimcher, M. J., A. J. Hodge, and F. O. Schmitt. 1957. Macromolecular aggregation states in relation to mineralization: The collagen-hydroxyapatite system as studied in vitro. Proc. Nat. Acad. Sci. U.S.A., 43: 860–867.CrossRefGoogle Scholar
  50. Glimcher, M. J., and E. P. Katz. 1965. The organization of collagen in bone: The role of non-covalent bonds in the relative insolubility of bone collagen. J. Ultrastruct. Res., 12: 705–729.CrossRefGoogle Scholar
  51. Glimcher, M. J., and S. M. Krane. 1962. Studies of the interactions of collagen and phosphate. I. The nature of inorganic orthophosphate binding. In Radioisotopes and Bone. McLean, F. C., Lacroix, P., and Bud, A. M., eds. Oxford, Blackwell Scientific Publications, pp. 393–418.Google Scholar
  52. Glimcher, M. J., G. Mechanic, L. C. Bonar, and E. J. Daniel. 1961b. The amino acid composition of the organic matrix of decalcified fetal bovine dental enamel. J. Biol. Chem., 236: 3210–3213.Google Scholar
  53. Glimcher, M. J., G. L. Mechanic, and U. A. Friberg. 1964c. The amino acid composition of the or- Matrices That Calcify ganic matrix and the neutral-soluble and acid-soluble components of embryonic bovine enamel. Biochem. J., 93: 198–202.Google Scholar
  54. Glimcher, M. J., D. F. Travis, U. A. Friberg, and G. L. Mechanic. 1964d. The electron microscopic localization of neutral-soluble proteins of developing bovine enamel. J. Ultrastruct. Res., 10: 362–376.CrossRefGoogle Scholar
  55. Gotte, L., and A. Serafini-Fracassini. 1963. Electron microscope observations of the structure of elastin. J. Atheroscler. Res., 3: 247–251.PubMedCrossRefGoogle Scholar
  56. Greenlee, T. K., R. Ross, and J. L. Hartman. 1966. The fine structure of elastic fibers. J. Cell Biol., 30: 59–71.PubMedCrossRefGoogle Scholar
  57. Greenstein, J., and M. Winitz. 1961. Chemistry of the Amino Acids. New York, J. Wiley and Sons, Inc., pp. 1552–1564.Google Scholar
  58. Gross, J. 1949. The structure of elastic tissue as studied with the electron microscope. J. Exp. Med., 89: 699–708.PubMedCrossRefGoogle Scholar
  59. Gross, J., J. H. Highberger, and F. O. Schmitt. 1955. Extraction of collagen from connective tissue by neutral salt solutions. Proc. Nat. Acad. Sci. U.S.A., 41: 1–7.CrossRefGoogle Scholar
  60. Gustavson, K. H. 1955. The molecular organization of collagen. J. Amer. Leather Chem. Ass., 50: 239–253.Google Scholar
  61. Gutman, A. B., and T. F. Yu. 1949. Further studies of the relation between glycogenolysis and calcification in cartilage. In First Conference on Metabolic Interrelations. Reifenstein, E. C., Jr., ed. New York, Josiah Macy, Jr. Foundation, pp. 11–26.Google Scholar
  62. Gutman, A. B., and T. F. Yu. 1950. A concept of the role of enzymes in endochondral calcification Trans. Macy Cong, on Metabolic Interrelations, 2: 167–190.Google Scholar
  63. Hallsworth, A. S. 1964. Aspects of calcification: Availability of e-amino groups in collagen aggregates. Biochem. J., 93: 255–260.PubMedGoogle Scholar
  64. Haust, M. D., R. H. More, S. A. Bencosme, and J. V. Balis. 1965. Elastogenesis in human aorta: An electron microscopic study. Exp. Molec. Path., 4: 508–524.PubMedCrossRefGoogle Scholar
  65. Hess, W. C., and C. Lee. 1954. The amino acid composition of proteins isolated from healthy enamel and dentin of carious teeth. J. Dent. Res., 33: 62–64.PubMedCrossRefGoogle Scholar
  66. Hodge, A. J., and J. A. Petruska. 1963. Recent studies with the election microscope on ordered aggregates of the tropocollagen macromolecule. In Aspects of Protein Structure. Ramachandran, G. N., ed. New York, Academic Press, Inc., pp. 289–300.Google Scholar
  67. Hodge, A. J., and F. O. Schmitt. 1960. The charge profile of the tropocollagen macromolecule and the packing arrangement in native-type collagen fibrils. Proc. Nat. Acad. Sci. U.S.A., 46: 186–197.CrossRefGoogle Scholar
  68. Hohling, H. J. 1960. Electronmikroskopische Untersuchungen an Ultradiinnschnitten von Kompakten, nicht vorbehandeltem Zahnschmelz. Z. Naturforsch., 156: 59–61.Google Scholar
  69. Hohling, H. J. 1965. Combined infra-red absorption, x-ray diffraction studies and amino acid analysis of the organic enamel substance of unfixed, fully developed teeth. In Tooth Enamel. Stack, M. V., and Fearnhead, R. W., eds. Bristol, John Wright and Sons, pp. 122–126.Google Scholar
  70. Hohling, H. J., R. M. Frank, and R. Harndt. 1963. Rontgenographische Untersuchungen an der organischen Matrix von foetalem und jugendlichem, menschlichem Schmelz. Deutsch. Zahnarzteblatt, 17: 77–80.Google Scholar
  71. Hormann, H. 1962. On the problem of crosslinking in collagen. Das Leder, 13: 79–86.Google Scholar
  72. Hormann, H., K. T. Joseph, and M. V. Wilm. 1965. Acetylated N-terminal groups in subunits of collagen peptide chains. Zeit. fur physiol. Chem., 341: 284–297.CrossRefGoogle Scholar
  73. Jackson, D. S., and J. P. Bentley. 1960. On the significance of the extractable collagens. J. Biophys. Biochem. Cytol. 7: 37–42.PubMedCrossRefGoogle Scholar
  74. Jackson, S. F. 1957. The fine structure of developing bone in embryonic fowl. Proc. Roy. Soc. Med., 146B: 270–280.CrossRefGoogle Scholar
  75. Jackson, S. F. 1960. Fibrogenesis and the formation of matrix. In Bone as a Tissue. Rodahl, K., Nicholson, J. T., and Brown, E. M., Jr., eds. New York, McGraw-Hill Book Company, pp. 165–185.Google Scholar
  76. Jensen, J. G. 1962. An electron microscopic study on the morphology of the elastin in foetal, human aorta. Acta Path. Microbiol. Scand., 56: 388–398.CrossRefGoogle Scholar
  77. Karrer, H. E. 1960. Electron microscope study of developing chick embryo aorta. J. Ultrastruct. Res., 4: 420–454.PubMedCrossRefGoogle Scholar
  78. Karrer, H. E. 1961. An electron microscope study of the aorta in young and in aging mice. J. Ultrastruct. Res., 5: 1–27.PubMedCrossRefGoogle Scholar
  79. Krane, S. M., M. J. Stone, and M. J. Glimcher. 1965. The presence of protein phosphokinase in connective tissues and the phosphorylation of enamel proteins in vitro. Biochim. Biophys. Acta, 97: 77–87.PubMedCrossRefGoogle Scholar
  80. Kulonen, E. 1955. The free amino groups of citrate-extracted collagen. Ann. Med. Exp. Biol. Fenn., 33, Suppl. 3: 3–8.Google Scholar
  81. Lansing, A. I., M. Alex, and T. B. Rosenthal. 1950. Calcium and elastin in human arteriosclerosis. J. Geront., 5: 112–119.PubMedCrossRefGoogle Scholar
  82. Lansing, A. I., T. B. Rosenthal, M. Alex, and E. W. Dempsey. 1952. The structure and chemical characterization of elastic fibers as revealed by elastase and by electron microscopy. Anat. Rec., 114: 555–570.PubMedCrossRefGoogle Scholar
  83. Labella, F. S. 1961. Studies on the soluble products released from purified elastic fibers by pancreatic elastase. Arch. Biochem., 93: 72–79.PubMedCrossRefGoogle Scholar
  84. Lehr, D. 1959. Causative relationships of parathormone to renogenic and reniprivic cardiovascular disease. Ann. N.Y. Acad. Sci., 72: 901–969.PubMedCrossRefGoogle Scholar
  85. Leung, S. W. 1960. Salivary calculus deposition. In Calcification in Biological Systems. Sognnaes, R. F., ed. Washington, D.C., Publ. No. 64, Amer. Ass. Advance. Sci., pp. 307–322.Google Scholar
  86. Levy, M., L. Fishman, and G. Cabrera. 1960. Epsilon amino group of lysine: A branch point in collagen structure. Fed. Proc., 19: 343.Google Scholar
  87. Likins, R. C., K. A. Piez, and M. L. Kunde. 1960. Mineralization of turkey leg tendon. III. Chemical nature of the protein and mineral phases. In Calcification in Biological Systems. Sognnaes, R. F., ed. Washington, D.C., Publ. No. 64, Amer. Ass. Advance. Sci., pp. 143–149.Google Scholar
  88. Martin, G. R., K. A. Piez, and M. S. Lewis. 1963a. The incorporation of [14C] glycine into the subunits of collagens from normal and lathyritic animals. Biochim. Biophys. Acta, 69: 472–479.CrossRefGoogle Scholar
  89. Martin, G. R., E. Schiffmann, H. A. Bladen, and M. Nylen. 1963b. Chemical and morphological studies on the in vitro calcification of the aorta. J. Cell Biol., 16: 243–252.CrossRefGoogle Scholar
  90. Mazur, A., and S. Green. 1959. Relation of iron to sulfydryl groups in ferritin. In Sulfur in Proteins. Benesch, R., et al., eds. New York, Academic Press, Inc., pp. 189–196.Google Scholar
  91. Mclean, F. C. 1960. Phosphorus metabolism. In Bone as a Tissue. Rodahl, K., Nicholson, J. T., and Brown, E. M., Jr., eds. New York, McGraw-Hill Book Company, pp. 330–336.Google Scholar
  92. Mergenhagen, S. E., G. R. Martin, A. A. Rizzo, D. N. Wright, and D. B. Scott. 1960. Calcification in vivo of implanted collagen. Biochim. Biophys. Acta, 43: 563–565.PubMedCrossRefGoogle Scholar
  93. Miller, E. J., and H. M. Fullmer. 1966. Elastin: diminished reactivity with aldehyde reagents in copper deficiency and lathyrism. J. Exp. Med., 123: 1097–1108.PubMedCrossRefGoogle Scholar
  94. Miller, E. J., G. R. Martin. 1968. The collagen of bone. Clin. Orthop., 59: 195–232.PubMedGoogle Scholar
  95. Miller, E. J., G. R. Martin, C. E. Mecca, and K. A. Piez. 1965. The biosynthesis of elastin crosslinks. The effect of copper deficiency and a lathyrogen. J. Biol. Chem., 240: 3623–3627.PubMedGoogle Scholar
  96. Miller, E. J., G. R. Martin, and K. A. Piez. 1964. The utilization of lysine in the biosynthesis of elastin cross-links. Biochem. Biophys. Res. Commun., 17: 248–253.PubMedCrossRefGoogle Scholar
  97. Miller, E. J., G. R. Martin, K. A. Piez, and M. J. Powers. 1967. Characterization of chick bone collagen. Compositional changes associated with maturation. J. Biol. Chem., 242: 5481–5489.PubMedGoogle Scholar
  98. Miller, E. J., S. R. Pinnell, G. R. Martin, and E. Schiffmann. 1967. Investigation of the nature of the intermediates involved in desmosine synthesis. Biochem. Biophys. Res. Commun., 26: 132–137.PubMedCrossRefGoogle Scholar
  99. Mortenson, L. E. 1963. Nitrogen fixation: role of ferredoxin in anaerobic metabolism. Ann. Rev. Microbiol., 17: 115–138.CrossRefGoogle Scholar
  100. Nageotte, J. 1927. On the artificial aggregation of collagen: Significance, general morphology, and technique. C. R. Soc. Biol. (Paris), 96: 172–174.Google Scholar
  101. Neuman, W. F., and M. W. Neuman. 1958. The Chemical Dynamics of Bone Mineral, Chicago, Univ. of Chicago Press, pp. 169–187.Google Scholar
  102. Nylen, M. U., E. D. Eanes, and K. A. Omnell. 1963. Crystal growth in rat enamel. J. Cell Biol., 18: 109–123.PubMedCrossRefGoogle Scholar
  103. Nylen, M. U., and K. A. Omnell. 1962. The relationship between the apatite crystals and the organic matrix of rat enamel. In Proceedings of the Fifth International Congress for Electron Microscopy. Breese, S. S., ed. New York, Academic Press, Inc., pp. QQ-4.Google Scholar
  104. Nylen, M. U., and D. B. Scott. 1960. Electron microscopic studies of odontogenesis. J. Indiana State Dent. Ass., 39: 406–421.Google Scholar
  105. Nylen, M. U., D. B. Scott, and V. M. Mosley. 1960. Mineralization of turkey leg tendon. II. Collagen-mineral relations revealed by electron and x-ray microscopy. In Calcification in Biological Systems. Sognnaes, R. F., ed. Washington, D.C., Publ. No. 64, Amer. Ass. Advance. Sci., pp. 129–142.Google Scholar
  106. O’dell, B. L., D. F. Elsden, J. Thomas, S. M. Partridge, R. H. Smith, and R. Palmer. 1966. Inhibition of the biosynthesis of cross-links in elastin by a lathyrogen. Nature (London), 209: 401–402.CrossRefGoogle Scholar
  107. Parker, F. 1958. An electron microscope study of coronary arteries. Amer. J. Anat., 103: 247–273.PubMedCrossRefGoogle Scholar
  108. Partridge, S. M. 1962. Elastin. In Advances in Protein Chemistry. Anfinsen, C. B., Anson, M. L., Bailey, K., and Edsall, J. T., eds. New York, Academic Press, Inc., Vol. 17, pp. 227–302.Google Scholar
  109. Partridge, S. M. 1966. Biosynthesis and nature of elastin structures. Fed. Proc., 25: 1023–1029.PubMedGoogle Scholar
  110. Partridge, S. M., H. F. Davis, and G. S. Adair. 1955. The chemistry of connective tissues. II. Soluble proteins derived from partial hydrolysis of elastin. Biochem. J., 61: 11–20.PubMedGoogle Scholar
  111. Partridge, S. M., D. F. Elsden, J. Thomas, A. Dorfman, A. Tesler, and P. Ho. 1964. Biosynthesis of the desmosine and isodesmosine cross-bridges in elastin. Biochem. J., 93: 30c-33c.PubMedGoogle Scholar
  112. Partridge, S. M., D. F. Elsden, J. Thomas, A. Dorfman, A. Tesler, and P. Ho. 1966. Incorporation of labeled lysine into the desmosine cross-bridges in elastin. Nature (London), 209: 399–400.CrossRefGoogle Scholar
  113. Pauling, L., and R. B. Corey. 1951. Configurations of polypeptide chains with favored orientations around single bonds: two new pleated sheets. Proc. Nat. Acad. Sci. U.S.A., 37: 729–740.CrossRefGoogle Scholar
  114. Pautard, F. G. E. 1963. Mineralization of keratin and its comparison with the enamel matrix. Nature (London), 199: 531–535.CrossRefGoogle Scholar
  115. Perdok, W. G., and G. Gustafson. 1961. X-ray diffraction studies of the insoluble protein in mature human enamel. Arch. Oral Biol., Suppl. 4: 70–75.CrossRefGoogle Scholar
  116. Petruska, J. A., and A. J. Hodge. 1964. A subunit model for the tropocollagen macromolecule. Proc. Nat. Acad. Sci. U.S.A., 51: 871–876.CrossRefGoogle Scholar
  117. Pfaundler, M. 1904. On the basis of calcium binding to tissues and its relation to the rickets question. lahrb. f. Kinderheilk., 60: 123–177.Google Scholar
  118. Piez, K. A. 1961. Amino acid composition of some calcified proteins. Science, 134: 841–842.PubMedCrossRefGoogle Scholar
  119. Piez, K. A. 1962. Chemistry of the protein matrix of enamel. In Fundamentals of Keratinization. Butcher, E. O., and Sognnaes, R. F., eds. Washington, D.C., Amer. Ass. Advance. Sci., pp. 173–174.Google Scholar
  120. Piez, K. A. 1967. Soluble collagen and the components resulting from its denaturation. In Treatise on Collagen. Vol. I, Chemistry of Collagen. Ramachandran, G. N., ed. New York, Academic Press, Inc.Google Scholar
  121. Piez, K. A., E. J. Miller, and G. R. Martin. 1965. The chemistry of elastin and its relationship to structure. In Advances in Biology of Skin. Montagna, W., ed. New York, Pergamon Press Inc., Vol. VI, pp. 245–253.Google Scholar
  122. Robinson, R. A., and H. Sheldon. 1960. Crystal collagen relationships in healing rickets. In Calcification in Biological Systems. Sognnaes, R. F., ed. Washington, D.C., Amer. Ass. Advance. Sci., pp. 261–279.Google Scholar
  123. Robison, R. 1926. The possible significance of hexose phosphoric esters in ossification: A reply to Shipley, Kramer, and Howland. Biochem. J., 20: 388–391.PubMedGoogle Scholar
  124. Robison, R., and A. H. Rosenheim. 1934. Calcification of hypertrophic cartilage in vitro. Biochem. J., 28: 684–698.PubMedGoogle Scholar
  125. s, E. 1962a. An electron microscopic study of the amelogenesis in human teeth. I. The fine structure of the ameloblasts. II. The amelogenesis of human teeth as revealed by electron microscopy. J. Ultrastruct. Res., 6: 229–248.CrossRefGoogle Scholar
  126. Ronnholm, E. 1962b. The development of enamel crystallites. J. Ultrastruct. Res., 6: 249–303.CrossRefGoogle Scholar
  127. Ronnholm, E. 1962c. The amelogenesis of human teeth as revealed by electron microscopy. III. The structure of the organic stroma of human enamel during amelogenesis. J. Ultrastruct. Res., 6: 368–389.CrossRefGoogle Scholar
  128. Rosenheim, A. H., and R. Robison. 1934. XCVIII. The calcification in vitro of kidney, lung, and aorta. Biochem. J., 28: 712–718.PubMedGoogle Scholar
  129. Santanam, M. S. 1959. Calcification of collagen. J. Mol. Biol. 1: 65–68.CrossRefGoogle Scholar
  130. Schiffmann, E., B. A. Corcoran, and G. R. Martin. 1966. The role of complexed heavy metals in initiating the mineralization of elastin and the precipitation of mineral from solution. Arch. Biochem., 115: 87–94.PubMedCrossRefGoogle Scholar
  131. Schiffmann, E., and G. R. Martin. 1962. In vitro calcification of rat aorta in serum. Nature (London), 194: 189–190.CrossRefGoogle Scholar
  132. Schiffmann, E., G. R. Martin, and B. A. Corcoran. 1964. The role of the matrix in aortic calcification. Arch. Biochem., 107: 284–291.PubMedCrossRefGoogle Scholar
  133. Schmitt, F. O., J. Gross, and J. H. Highberger. 1955. States of aggregation of collagen. In Fibrous Proteins and Their Biological Significance. Sympos. Soc. Exp. Biol., 9: 148–162.Google Scholar
  134. Schmitt, F. O., C. E. Hall, and M. A. Jakus. 1942. Electron microscope investigations of the structure of collagen. J. Cell. Physiol., 20:11–33.CrossRefGoogle Scholar
  135. Scott, D. B., M. J. Ussing, R. F. Sognnaes, and R. W. G. Wyckoff. 1952. Electron microscopy of mature human enamel. J. Dent. Res., 31:74–84.PubMedCrossRefGoogle Scholar
  136. Selye, H. 1962. Calciphylaxis. Chicago, University of Chicago Press.Google Scholar
  137. Severin, S. E. 1965. Problems concerned with the biological activity of naturally occurring iminazole compounds. Proc. Int. Congr. Biochem., I.U.B., 33: 45–61.Google Scholar
  138. Shipley, B. G., B. Kramer, and J. Howland. 1926. Studies on calcification in vitro. Biochem. J., 20: 379–387.PubMedGoogle Scholar
  139. Sobel, A. E. 1965. Multiple substances and mechanisms of nucleation. In Calcified Tissues. Richelle, L. J., and Dallemagne, M. J., eds. Collections des Colloques de l’Universite de Liege, pp. 291–298.Google Scholar
  140. Sobel, A. E., and M. Burger. 1954. Calcification. XIV. Investigation of the role of chondroitin sulfate in the calcifying mechanism. Proc. Soc. Exp. Biol. Med., 87: 7–13.PubMedGoogle Scholar
  141. Sobel, A. E., and A. Hawk. 1952. Reversible inactivation of calcification in vitro and related studies. J. Biol. Chem., 197: 669–685.PubMedGoogle Scholar
  142. Solomons, C. C., and J. T. Irving. 1958. Studies in calcification. The reaction of some hard and soft tissue collagens with l-fluoro-2:4-dinitrobenzene. Biochem. J., 68: 499–503.PubMedGoogle Scholar
  143. Solomons, C. C., J. T. Irving, and W. F. Neuman. 1960. Calcification of the dentin matrix. In Calcification in Biological Systems. Sognnaes, R. F., ed. Washington, D.C., Publ. No. 14, Amer. Ass. Advance. Sci., pp. 203–216.Google Scholar
  144. Stack, M. V. 1954. Organic constituents of enamel. J. Amer. Dent. Ass., 48: 297–306.PubMedGoogle Scholar
  145. Stack, M. V. 1960. Changes in the organic matrix of enamel during growth. J. Bone Joint Surg. (Brit.), 42B: 853.Google Scholar
  146. Strates, B., W. F. Neuman, and G. J. Levinskas. 1957. The solubility of bone mineral. II. Precipitation of near-neutral solutions of calcium and phosphate. J. Phys. Chem., 61: 279–282.CrossRefGoogle Scholar
  147. Strates, B., and W. F. Neuman. 1958. On the mechanisms of calcification. Proc. Soc. Exp. Biol. Med., 97: 688–691.PubMedGoogle Scholar
  148. Taves, D. R. 1963. Factors controlling calcification, Ph.D. thesis. University of Rochester, Rochester, New York.Google Scholar
  149. Taves, D. R., and W. F. Neuman. 1964. Factors controlling calcification in vitro: Fluoride and magnesium. Arch. Biochem., 108: 390–397.PubMedCrossRefGoogle Scholar
  150. Thiele, H., and H. Kronke. 1955. Geordnete kristallisation in ionotropen gelen. Naturwissenschaften, 42: 389.CrossRefGoogle Scholar
  151. Thomas, J., D. F. Elsden, and S. M. Partridge. 1963. Degradation products from elastin. Nature (London), 200: 651–652.CrossRefGoogle Scholar
  152. Trautz, O. R., and B. N. Bachra. 1963. Oriented precipitation of inorganic crystals in fibrous matrices. Arch. Oral Biol., 8: 601–613.PubMedCrossRefGoogle Scholar
  153. Travis, D. F., and M. J. Glimcher. 1964. The structure and organization of, and the relationship between the organic matrix and the inorganic crystals of embryonic bovine enamel. J. Cell Biol., 23: 447–497.PubMedCrossRefGoogle Scholar
  154. Veis, A., and R. J. Schlueter. 1964. The macromolecular organization of dentin matrix collagen. I. Characterization of dentin collagen. Biochem. J., 3: 1650–1657.CrossRefGoogle Scholar
  155. Walton, A. G. 1965. Nucleation of crystals from solution. Science, 148: 601–607.PubMedCrossRefGoogle Scholar
  156. Watson, M. L. 1960. The extracellular nature of enamel in the rat. J. Biophys. Biochem. Cytol., 7: 489–491.PubMedCrossRefGoogle Scholar
  157. Watson, M. L. 1962. Extracellular position of enamel. In Fundamentals of Keratinization. Butcher. E. O., and Sognnaes, R. F., eds. Washington, D.C., Amer. Ass. Advance. Sci., pp. 161–171.Google Scholar
  158. Weidmann, S. M. 1963. Calcification of skeletal tissues. In International Review of Connective Tissue Research. Hall, S. A., ed. New York, Academic Press, Inc., pp. 339–375.Google Scholar
  159. Weinmann, J. P., G. D. Wessinger, and G. Reed. 1942. Correlation of chemical and histological investigations on developing enamel. J. Dent. Res., 21: 171–182.CrossRefGoogle Scholar
  160. Weissmann, G., and S. Weissmann. 1960. X-ray diffraction studies of human aortic elastin residues. J. Clin. Invest., 39: 1657–1666.PubMedCrossRefGoogle Scholar
  161. Wuthier, R. E., P. Grøn, and J. T. Irving. 1964. The reaction of l-fluoro-2:4-dinitrobenzene with bone: Studies on the relationship between bone collagen and apatite. Biochem J., 92: 205–216.PubMedGoogle Scholar
  162. Wyckoff, R. W. G., and R. B. Corey. 1936. X-ray patterns from reprecipitated connective tissue. Proc. Soc. Exp. Biol. Med., 34:285–287.Google Scholar
  163. Yu, S. Y., and H. T. Blumenthal. 1963a. The calcification of elastic fibers. I. Biochemical studies. J. Geront., 18: 119–126.Google Scholar
  164. Yu, S. Y., and H. T. Blumenthal. 1963b. The calcification of elastic fibers. II. Ultramicroscopic characteristics. J. Geront., 18: 127–134.Google Scholar
  165. Yu, S. Y., and H. T. Blumenthal. 1963c. The calcification of elastic fibers. III. Various crystalline structures of apatite in human aortas. Lab. Invest., 12: 1154–1162.Google Scholar
  166. Yu, S. Y., and H. T. Blumenthal. 1965. Calcification of elastic fibers. IV. Epinephrine and beta-aminopropionitrile-induced calcification in animal aortas. J. Atheroscler. Res., 5: 159–173.PubMedCrossRefGoogle Scholar

Copyright information

© Meredith Corporation 1970

Authors and Affiliations

  • E. Schiffmann
    • 1
  • G. R. Martin
    • 1
  • E. J. Miller
    • 1
  1. 1.Laboratory of Biochemistry, National Institute of Dental ResearchNational Institutes of HealthBethesdaUSA

Personalised recommendations