Structure and Chemistry of Bone Mineral

  • E. D. Eanes
  • A. S. Posner


Many of the properties unique to the calcified tissues of vertebrates can be ascribed to the mineral salts investing the interstitial spaces of these structures. By far the most distinctive of these properties, hardness, can be attributed directly to the ultra-structural interrelations between the mineral and the organic, fibrous extracellular matrix. To many, however, this hardness implies inertness and passivity, especially of the mineral component itself. But, the mineral salts of bone are far from chemically inactive, for in addition to their mechanical function, these salts play an important role in the dynamic physiological chemistry of living hard tissue. It is this dual mechanical and physiological character that makes the study of the mineral component of bone a fascinating subject; and it is challenging to try to understand how the mineral can fulfill its two disparate, yet complementary roles. This chapter will attempt to summarize the most recent progress in the description of this component and to review the current concepts concerning its origin and its physiological-structural functions. Emphasis will be placed on the mineral itself, alluding to the organic and cellular components only in reference to their involvement in the formation, maintenance, and function of the mineral component.


Bone Mineral Calcium Phosphate Calcify Tissue Amorphous Calcium Phosphate Apatite Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames, L. L., Jr. 1959. The genesis of carbonate apatites. Econ. Geol., 54: 829–841.CrossRefGoogle Scholar
  2. Ascenzi, A., and E. Bonucci. 1966. The osteon calcification as revealed by the electron microscope. In Calcified Tissues 1965, Proceedings of the Third European Symposium on Calcified Tissues. Fleisch, H., Blackwood, H. J. J., and Owen, M., eds. New York, Springer-Verlag New York Inc., pp. 142–146.Google Scholar
  3. Bauer, H. 1959. Über eine Apatitartige Verbindung der Formel Ba10(PO4)5(BO4). Angew. Chem., 71: 374.Google Scholar
  4. Bernard, G. W. 1967. The ultrastructure of the bone nodule, the developmental unit of bone. Anat. Rec., 157: 213 (Abstr.).Google Scholar
  5. Bernard, G. W., and D. C. Pease. 1967. The bone nodule: The developmental unit of bone. Abstracts of the 45th General Meeting of the International Association for Dental Research, 72, Washington, D.C.Google Scholar
  6. Berry, E. E. 1967. The structure and composition of some calcium-deficient apatites. J. Inorg. Nucl. Chem., 29: 317–327.CrossRefGoogle Scholar
  7. Berry, E. E., and S. A. Leach. 1966. Physico-chemical studies of some basic calcium phosphates. In The Fourth European Symposium on Calcified Tissues. Gaillard, P. I., van den Hooff, A., and Steendijk, R., eds. Amsterdam, Excerpta Medica, pp. 6–8.Google Scholar
  8. Berry, E. E., and S. A. Leach. 1967. The structure of some calcium deficient appetites. Arch. Oral Biol., 12: 171–174.PubMedCrossRefGoogle Scholar
  9. Brown, W. E. 1965. A mechanism for growth of apatitic crystal. In Tooth Enamel, Stack, M. V., and Fearnhead, R. W., eds. Bristol, John Wright and Sons, pp. 11–14.Google Scholar
  10. Brown, W. E., 1966. Crystal growth of bone mineral. Clin. Orthop., 44: 205–220.PubMedGoogle Scholar
  11. Carlstrom, D. 1955. X-ray crystallographic studies on apatites and calcified structures. Acta Radiol., Suppl. ( Stockholm ), 121: 1–59.Google Scholar
  12. Currey, J. D. 1964. Three analogies to explain the mechanical properties of bone. Biorheology, 2: 1–10.Google Scholar
  13. Dallemagne, M. J. 1945. Données récentes sur la nature et le métabolisme de l’os. Actualités Biochim., 2: 5–67.Google Scholar
  14. Dejong, W. F. 1926. La substance minérale dans les os. Rec. Trav. Chim., 45: 445–448.CrossRefGoogle Scholar
  15. Durning, W. C. 1958. Submicroscopic structure of frozen-dried epiphyseal plate and adjacent spongiosa of the rat. J. Ultrastruct. Res., 2: 245–260.PubMedCrossRefGoogle Scholar
  16. Dziewiatkowski, D. D., N. Di Ferrante, F. Bronner, and G. J. Okinaka. 1957. Turnover of S35—sulfate in epiphyses and diaphyses of suckling rats. J. Exp. Med., 106: 509–524.PubMedCrossRefGoogle Scholar
  17. Eanes, E. D. 1965. Effect of fluoride on human bone apatite crystals. In Mechanisms of Dental Caries. Fredrick, J. F., and Schole, M. L., Eds. Ann. N.Y. Acad. Sci., 131: 727–736.Google Scholar
  18. Eanes, E. D., 1967. Unpublished results.Google Scholar
  19. Eanes, E. D., I. H. Gillessen, and A. S. Posner. 1965a. Intermediate states in the precipitation of hydroxyapatite. Nature (London), 208: 365–367.CrossRefGoogle Scholar
  20. Eanes, E. D., I. H. Gillessen, and A. S. Posner. 1967. Mechanism of conversion of non-crystalline calcium phosphate to crystalline hydroxyapatite. In Crystal Growth. Peiser, H. S., ed. Oxford, Pergamon Press, Inc., pp. 373–376.Google Scholar
  21. Eanes, E. D., R. A. Harper, I. H. Gillissen, and A. S. Posner. 1966. An amorphous component in bone mineral. In The Fourth European Symposium on Calcified Tissues. Gaillard, P. J., van den Hooff, A., and Steendijk, R., eds. Amsterdam, Exerpta Medica, pp. 24–26.Google Scholar
  22. Eanes, E. D., and A. S. Posner. 1965. Kinetics and mechanism of conversion of non-crystalline calcium phosphate to crystalline hydroxyapatite. Trans. N.Y. Acad. Sci., 28: 233–241.Google Scholar
  23. Eanes, E. D., and A. S. Posner. 1967. X-ray scattering study of bone apatite. In Proceedings of the Conference on Small-Angle X-ray Scattering. Brumberger, H., ed. New York, Gordon and Breach Science Publishers, Inc., pp. 493–501.Google Scholar
  24. Eanes, E. D., I. Zipkin, R. A. Harper, and A. S. Posner. 1965b. Small-angle x-ray diffraction analysis of the effect of fluoride on human bone apatite. Arch. Oral Biol., 10: 161–173.CrossRefGoogle Scholar
  25. Eastoe, J. E. 1961. The chemical composition of bone. In Biochemists’ Handbook. Long, C., ed. Princeton, N.J., D. Van Nostrand Co., Inc., pp. 715–720.Google Scholar
  26. Elliott, J. C. 1965. The interpretation of the infrared absorption spectra of some carbonate- containing apatites. In Tooth Enamel. Stack, M. V., and Fearnhead, R. W., eds. Bristol, John Wright and Sons, pp. 20–22.Google Scholar
  27. Engstrom, A., and R. Zetterstrom. 1951. Studies on the ultrastructure of bone. Exp. Cell Res., 2: 268–274.CrossRefGoogle Scholar
  28. Fernandez-Moran, J., and A. Engstrom. 1957. Electron microscopy and x-ray diffraction of bone. Biochim. Biophys. Acta, 23: 260–264.PubMedCrossRefGoogle Scholar
  29. Finean, J. B., and A. Engstrom. 1953. The low-angle scatter of x-rays from bone tissue. Biochim. Biophys. Acta, 11: 178–189.PubMedCrossRefGoogle Scholar
  30. Fitton-Jackson, S., and J. T. Randall. 1956. Fibrogenesis and the formation of matrix in developing bone. In Bone Structure and Metabolism. Wolstenholme, G. E. W., and O’Connor, C. M., eds. Boston, Little, Brown and Company, pp. 47–64.Google Scholar
  31. Fleisch, H. 1964. Role of nucleation and inhibition in calcification. Clin. Orthop., 32: 170–180.PubMedGoogle Scholar
  32. Frazier, P. D. 1967. X-ray diffraction analysis of human enamel containing different amounts of fluoride. Arch. Oral Biol., 12: 35–42.PubMedCrossRefGoogle Scholar
  33. Gee, A., and V. R. Deitz. 1955. Pyrophosphate formation upon ignition of precipitated basic calcium phosphates. Anal. Chem., 77: 2961–2965.Google Scholar
  34. Glimcher, M. J. 1959. Molecular biology of mineralized tissues with particular reference to bone. Revs. Modern Phys., 31: 359.CrossRefGoogle Scholar
  35. Greenawalt, J. W., C. S. Rossi, and A. L. Lehninger. 1964. Effect of active accumulation of calcium and phosphate ions on the structure of rat liver mitochondria. J. Cell Biol., 23: 21–38.PubMedCrossRefGoogle Scholar
  36. Gutman, A. B., and T. F. Yu. 1950. A concept of the role of enzymes in endochondral calcification. In Metabolic Interrelations. Reifenstein, E. C., ed. New York, Josiah Macy, Jr. Foundation, pp. 167–190.Google Scholar
  37. Hancox, N. M., and B. Boothroyd. 1965. Electron microscopy of the early stages of osteogenesis. Clin. Orthop., 40: 153–161.PubMedGoogle Scholar
  38. Hancox, N. M., and B. Boothroyd. 1966. Electron microscope observations of osteogenesis. In The Fourth European Symposium on Calcified Tissues. Gaillard, P. J., van den Hooff, A., and Steendijk, R., eds. Amsterdam, Excerpta Medica, pp. 42–43.Google Scholar
  39. Harper, R. A., and A. S. Posner. 1966. Measurement of non-crystalline calcium phosphate in bone mineral. Proc. Soc. Exp. Biol. Med., 122: 137–142.PubMedGoogle Scholar
  40. Harris, H. A. 1932. Glycogen in cartilage. Nature (London), 130: 996–997.CrossRefGoogle Scholar
  41. Johansen, E., and H. F. Parks. 1960. Electron microscopic observation on the three- dimensional morphology of apatite crystallites of human dentine and bone. J. Biophys. Biochem. Cytol., 7: 743–746.PubMedCrossRefGoogle Scholar
  42. Kay, M. I., R. A. Young, and A. S. Posner. 1964. Crystal structure of hydroxyapatite. Nature (London), 204: 1050–1052.CrossRefGoogle Scholar
  43. Levine, P. T., M. J. Glimcher, J. M. Seyer, J. I. Huddleston, and J. W. Hein. 1966. Non-collagenous nature of the proteins of shark enamel. Science, 154: 1192–1194.PubMedCrossRefGoogle Scholar
  44. MacGregor, J. 1966. Some observations on the nature of bone mineral. In Calcified Tissues 1965. Proceedings of the Third European Symposium on Calcified Tissues. Fleisch, H., Blackwood, H. J. J., and Owen, M., eds. New York, Springer-Verlag New York Inc., pp. 138–142.Google Scholar
  45. Mcconnell, D. 1960. Recent advances in the investigation of the crystal chemistry of dental enamel. Arch. Oral Biol., 3: 28–34.CrossRefGoogle Scholar
  46. Menczel, J., A. S. Posner, and R. A. Harper. 1965. Age changes in the crystallinity of rat bone apatite. Israel J. Med. Sci., 1: 251–252.PubMedGoogle Scholar
  47. Molnar, Z. 1959. Development of the parietal bone of young mice. I. Crystals of bone mineral in frozen-dried preparations. J. Ultrastruct. Res., 3: 39–45.PubMedCrossRefGoogle Scholar
  48. Molnar, Z., 1960. Additional observations on bone crystal dimensions. Clin. Orthop., 17: 38–42.Google Scholar
  49. Neuman, W. F. 1953. Collected studies on hydroxyl apatite. The University of Rochester Atomic Energy Project. Report No. UR-238. Rochester, Univ. of Rochester.Google Scholar
  50. Neuman, W. F., and M. W. Neuman. 1958. The Chemical Dynamics of Bone Mineral, Chicago, University of Chicago Press.Google Scholar
  51. Nielsen, A. E. 1964. Kinetics of Precipitation, New York, Macmillan Company, Ch. 9.Google Scholar
  52. Nylen, M. U., E. D. Eanes, and K.-A. Omnell. 1963. Crystal growth in rat enamel. J. Cell Biol., 18: 109–123.PubMedCrossRefGoogle Scholar
  53. Nylen, M. U. and D. B. Scott. 1960. Basic studies in calcification. J. Dent. Med., 15: 80–84.Google Scholar
  54. Pautard, F. G. E. 1966. A biomolecular survey of calcification. In Calcified Tissues 1965, Proceedings of the Third European Symposium on Calcified Tissues. Fleisch, H., Blackwood, H. J. J., and Owen, M., eds. New York, Springer-Verlag New York Inc., pp. 108–122.Google Scholar
  55. Posner, A. S. 1961. Mineralized tissues. In Phosphorus and Its Compounds. Van Wazer, J. R., ed. New York, Interscience, Vol. 2, pp. 1429–1459.Google Scholar
  56. Posner, A. S., E. D. Eanes, R. A. Harper, and I. Zipkin. 1963. X-ray diffraction analysis of the effect of fluoride on human bone apatite. Arch. Oral Biol., 8: 549–570.PubMedCrossRefGoogle Scholar
  57. Posner, A. S., and A. Perloff. 1957: Apatites deficient in divalent cations. J. Res. Nat. Bur. Standards, 58: 279–286.Google Scholar
  58. Posner, A. S., A. Perloff, and A. F. Diorio. 1958. Refinement of the hydroxyapatite structure. Acta Cryst., 11: 308–309.CrossRefGoogle Scholar
  59. Posner, A. S., and S. R. Stephenson. 1953. Isomorphous substitution in enamel apatite. J. Amer. Dent. Ass., 46: 257–264.PubMedGoogle Scholar
  60. Robinson, R. A. 1966. The structural organization of bone tissue. In Structural Organization of the Skeleton, Birth Defects Original Article Series. Bergsma, D., and Milch, R. A., eds. New York, The National Foundation, Vol. 2, pp. 40–44.Google Scholar
  61. Robinson, R. A., and M. L. Watson. 1952. Collagen-crystal relationships in bone as seen in the electron microscope. Anat. Rec., 114: 383–410.PubMedCrossRefGoogle Scholar
  62. Robinson, R. A., and M. L. Watson. 1955. Crystal-collagen relationships in bone as observed in the electron microscope. III. Crystal and collagen morphology as a function of age. Ann. N.Y. Acad. Sci., 60:596–628.CrossRefGoogle Scholar
  63. Robison, R. 1923. The possible significance of hexosephosphoric esters in ossification. Biochem. J., 17: 286–293.Google Scholar
  64. Robison, R., M. Mcleod, and A. H. Rosenheim. 1930. The possible significance of hexosephosphoric esters in ossification. IX. Calcification in vitro. Biochem. J., 24: 1927–1941.PubMedGoogle Scholar
  65. Rowland, R. E. 1966. Exchangeable bone calcium. Clin. Orthop., 49: 233–248.PubMedGoogle Scholar
  66. Sobel, A. E., M. Burger, B. C. Deane, H. G. Albaum, and K. Cost. 1957. Calcification. XVIII. Lack of correlation between calcification in vitro and glycolytic enzymes. Proc. Soc. Exp. Biol. Med., 96: 32–39.PubMedGoogle Scholar
  67. Solomons, C. C., and J. T. Irving. 1958. Studies in calcification. The reaction of some hard- and soft-tissue collagens with l-fluoro-2:4-dinitrobenzene. Biochem. J., 68: 499–503.PubMedGoogle Scholar
  68. Stevenson, J. S., and L. S. Stevenson. 1966. Fluorine content of microsaur teeth from the carboniferous rocks of Joggins, Nova Scotia. Science, 154: 1548–1550.PubMedCrossRefGoogle Scholar
  69. Strates, B., and W. F. Neuman. 1958. On the mechanisms of calcification. Proc. Soc. Exp. Biol. Med., 97: 688–691.PubMedGoogle Scholar
  70. Taves, D. R. 1965. Mechanisms of calcification. Clin. Orthop., 42: 207–220.PubMedGoogle Scholar
  71. Termine, J. D., and A. S. Posner. 1966. Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science, 153: 1523–1525.PubMedCrossRefGoogle Scholar
  72. Termine, J. D., and A. S. Posner. 1967. Amorphous/crystalline interrelationships in bone mineral. Calc. Tiss. Res., 1: 8–23.CrossRefGoogle Scholar
  73. Watson, M. L., and R. A. Robinson. 1953. Collagen-crystal relationships in bone. II. Electron microscope study of basic calcium phosphate crystals. Amer. J. Anat., 93: 25–60.PubMedCrossRefGoogle Scholar
  74. Weber, J. C., E. D. Eanes, and R. J. Gerdes. 1967. Electron microscope study of noncrystalline calcium phosphate. Archs. Biochem. Biophys., 120: 723–724.CrossRefGoogle Scholar
  75. Weidmann, S. M. 1963. Calcification of skeletal tissues. Int. Rev. Connect. Tissue Res., 1: 339–377.PubMedGoogle Scholar
  76. Winand, L. 1965. Physico-chemical study of some apatitic calcium phosphates. In Tooth Enamel. Stack, M. V., and Fearnhead, R. W., eds. Bristol, John Wright and Sons, pp. 15–19.Google Scholar
  77. Wolpers, C. 1949. Elektronenmikroskopie der Plasma-Derivate. Grenzgeb. d. Med., 2: 527.Google Scholar
  78. Wondratschek, H. 1963. Untersuchungen zur Kristallchemie der Blei-Apatit (Pyromorphite). Neus Jb. Miner. Abh., 99: 113–160.Google Scholar
  79. Woodard, H. Q. 1962. The elementary composition of human cortical bone. Health Phys., 8: 513–517.PubMedCrossRefGoogle Scholar
  80. Young, R. A., and J. C. Elliott. 1966. Atomic-scale bases for several properties of apatites. Arch. Oral Biol., 11: 699–707.PubMedCrossRefGoogle Scholar

Copyright information

© Meredith Corporation 1970

Authors and Affiliations

  • E. D. Eanes
    • 1
  • A. S. Posner
    • 2
  1. 1.National Institute of Dental ResearchNational Institutes of HealthBethesdaUSA
  2. 2.The Hospital for Special SurgeryCornell University Medical CollegeNew YorkUSA

Personalised recommendations