Magnetic properties of other mineral systems

  • W. O’Reilly


Haematite is a much studied and little understood material, and to extract what might be considered the intrinsic magnetic properties, relevant to its role as a remanence carrier, from the body of available data is problematical. It seems that microstructure and extrinsic influences affect more than just the magnetization process parameters in the case of haematite. One problem is that ideal haematite has only a weak magnetization, about 0.5 percent of that of magnetite, and the measured properties of haematite samples are correspondingly susceptible to (say) the distorting effect of undetectable quantities of magnetic contaminants. Studies on highly specified crystals have tended to concentrate on the antiferromagnetic properties, and such experiments are largely irrelevant to the fine-grain remanence-carrying haematite of rock samples. Studies of fine particle samples, prepared by crushing larger crystals, by oxidizing magnetite or by the decomposition or dehydration of a suitable iron-bearing compound, produce a range of values of saturation magnetization (after high field susceptibility has been allowed for). The magnetization also is found to fall after high temperature treatment, in air, of some of the studied material. An absolute prerequisite for an interpretable study of the intrinsic properties or magnetization process in haematite is an exhaustive characterization of the sample material. However, it may be that magnetic properties are more sensitive to (say) the presence of small quantities of maghemite than are other analytical techniques, and only indirect assessment of the material may be possible.


Basal Plane Coercive Force Spin Structure Mineral Magnetism Spontaneous Magnetization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Artman, J.O., Murphy, J.C. and Foner, S. (1965) Magnetic anisotropy in anti ferromagnetic corundum-type sesquioxides. Phys. Rev. 138, A912–A917.CrossRefGoogle Scholar
  2. Banerjee, S.K. (1971) New grain size limits for the palaeomagnetic stability in haematite. Nature Phys. Sci. 232, 15–16.Google Scholar
  3. Besser, P.J., Morrish, A.H. and Searle, C.W. (1967) Magnetocrystalline anisotropy of pure and doped hematite. Phys. Rev. 153, 632–640.CrossRefGoogle Scholar
  4. Bhimasankaram, V.L.S. and Lewis, M. (1966) Magnetic reversal phenomena in pyrrhotite. Geophys. J.R. Astr. Soc. 11, 485–497.CrossRefGoogle Scholar
  5. Bozorth, R.M., Walsh, D.E. and Williams, A.J. (1957) Magnetization of haematite-ilmenite system at low temperatures. Phys. Rev. 108, 157–158.CrossRefGoogle Scholar
  6. Chevallier, R. and Mathieu, S. (1943) Propriétés magnetiques des poudres d’hématites; influence des dimensions des grains. Ann. Phys. 18, 258–288.Google Scholar
  7. Collinson, D.W. (1974) The role of pigment and specularite in the remanent magnetization of red sandstones. Geophys. J.R. Astr. Soc. 38, 253–264.CrossRefGoogle Scholar
  8. Creer, K.M., Hedley, I.G. and O’Reilly, W. (1975) `Magnetic oxides in geomagnetism’, in Magnetic Oxides,(ed. D.J. Craik), John Wiley & Sons, London, New York, Sydney, Toronto, Chapter 11, pp. 649–688.Google Scholar
  9. Dankers, P. (1981) Relationship between median destructive field and remanent coercive forces for dispersed natural magnetite, titanomagnetite and hematite. Geophys. J.R. Astr. Soc. 64 447–461.CrossRefGoogle Scholar
  10. Dunlop, D.J. (1971) Magnetic properties of fine-particle hematite. Ann. G¨¦ophys. 27, 269–293Google Scholar
  11. Dunlop, D.J. (1981) The rock magnetism of fine particles. Phys. Earth Planet. Int. 26, 1–26.CrossRefGoogle Scholar
  12. Dunlop, D.J. and Stirling, J.M. (1977) “Hard” viscous remanent magnetization (VRM) in fine-grained hematite. Geophys. Res. Letts. 4, 163–166.CrossRefGoogle Scholar
  13. Eaton, J.A. and Morrish, A.H. (1969) Magnetic domains in hematite at and above the Morin transition. J. Appl. Phys. 40, 3180–3185.CrossRefGoogle Scholar
  14. Evans, M.E., McElhinny, M.W. and Gifford, A.C. (1968) Single domain magnetite and high coercivities in a gabbroic intrusion. Earth Planet. Sci. Letts. 4, 142–146.CrossRefGoogle Scholar
  15. Flanders, P.J. and Schuele, W. (1964) `Temperature dependent magnetic properties of hematite single crystals, in Proceedings of the International Conference of Magnetism,Nottingham, September 1964, Institute of Physics and the Physical Society, London, pp, 594–596.Google Scholar
  16. Fuller, M.D. (1970) Geophysical aspects of paleomagnetism. Grit. Rev. Solid State Sci. 137–219.Google Scholar
  17. Halgedahl, S.L. and Fuller, M. (1981) The dependence of magnetic domain structure upon magnetization state in polycrystalline pyrrhotite. Phys. Earth Planet. Int. 26, 93–97.CrossRefGoogle Scholar
  18. Hedley, L.G. (1968) Chemical remanent magnetization in the FeOOH, Fe2O3 system. Phys. Earth Planet. Int. 1, 103–121.CrossRefGoogle Scholar
  19. Hedley, I.G. (1971) The weak ferromagnetism of goethite (a-FeOOH). Z. Geophys. 37, 409–420.Google Scholar
  20. Hoffman, K.A. (1975) Cation diffusion process and self-reversal of thermoremanent magnetization in the ilmenite-haematite solid solution series. Geophys. J.R. Astr. Soc. 41, 65–80.CrossRefGoogle Scholar
  21. Hoye, G.S. and Evans, M.E. (1975) Remanent magnetizations in oxidized olivine. Geophys. J.R. Astr. Soc. 41, 139–151.CrossRefGoogle Scholar
  22. Ishikawa, Y. (1962) Magnetic properties of ilmenite-hematite system at low temperature. J. Phys. Soc. Japan 17, 1835–1844.CrossRefGoogle Scholar
  23. Ishikawa, Y. and Akimoto, S. (1958) Magnetic property and crystal chemistry of ilmenite (MeTiO3) and hematite (aFe2O3) system, 2: Magnetic property. J. Phys. Soc. Japan 13, 1298–1310.CrossRefGoogle Scholar
  24. Ishikawa, Y. and Syono, Y. (1963) Order-disorder transformation and reverse thermoremanence in the FeTiO3¡ªFe2O3 system. J. Phys. Chem. Solids 24, 517–528.CrossRefGoogle Scholar
  25. Jacobs, I.S., Beyerlein, R.A., Foner, S. and Remeika, J.P. (1971) Field induced magnetic phase transitions in antiferromagnetic hematite (a ¡ª Fe2 03). Inter. J. Magnetism 1, 193–208.Google Scholar
  26. Lindsley, D.H. (1976) `Experimental studies of oxide minerals’, in Oxide Minerals (ed.: D. Rumble III), Mineralogical Society of America, Washington, D.C., Chapter 2.Google Scholar
  27. Merill, R.T. (1968) A possible source for the coercivity of Ilmenite-Hematite minerals. J. Geomag. Geoelectr. 20, 181–185.CrossRefGoogle Scholar
  28. Moskowitz, B.M. and Hargraves, R.B. (1982) Magnetic changes accompanying the thermal decomposition of nontronite (in air) and its relevance to Martian mineralogy. J. Geophys. Res. 87, 10115–10128.CrossRefGoogle Scholar
  29. Nagata, T. and Akimoto, S. (1956) Magnetic properties of ferromagnetic ilmenites. Geofis. Pura e Appl. 34, 36–50.CrossRefGoogle Scholar
  30. N¨¦el, L. and Pauthenet, R. (1952) Etude thermomagn¨¦tique d’un monocristal de Fe2 03 a. C.R. Acad. Sci.(Paris) 234, 2172–2174.Google Scholar
  31. Owens, W.H. (1982) A simple model for non-vanishing rotational hysteresis in haematite. Phys. Earth Planet. Int. 27, 106–113.CrossRefGoogle Scholar
  32. Schwarz, E.J. (1975) Magnetic properties of pyrrhotite and their use in applied geology and geophysics. Geol. Surv. Canada, paper 74–59.Google Scholar
  33. Schwarz, E.J. and Vaughan, D.J. (1972) Magnetic phase relations of pyrrhotite. J. Geomag. Geoelectr. 22, 463–470.CrossRefGoogle Scholar
  34. Searle, C.W. and Morrish, A.H. (1966) A three sublattice theory of weakly ferromagnetic aMe¨®+Fe¨®+Fez,_¨®)03.J. Appl. Phys. 37, 1141–1142.CrossRefGoogle Scholar
  35. Smith, R.W. and Fuller, M. (1967) Alpha-hematite: stable remanence and memory. Science 156, 1130 1133.Google Scholar
  36. Soffel, H.C. (1977) Pseudo-single domain effects and the single domain-multidomain transition in natural pyrrhotite deduced from domain structure observations. J. Geophys. 42, 351–359.Google Scholar
  37. Soffel, H.C. (1981) Domain structure of natural fine-grained pyrrhotite in a rock matrix (diabase). Phys. Earth Planet. Int. 26, 98–106.CrossRefGoogle Scholar
  38. Stephenson, A. and Collinson, D.W. (1974) Lunar magnetic field palaeo-intensities determined by an anhysteretic remanent magnetization method. Earth Planet. Sci. Letts. 23, 220–228.CrossRefGoogle Scholar
  39. Strangway, D.W., Honea, R.M., McMahon, B.E. and Larson, E.E. (1968) The magnetic properties of naturally occurring goethite. Geophys. J.R. Astr. Soc. 15, 345–359.CrossRefGoogle Scholar
  40. Syono, Y., Akimoto, S. and Nagata, T. (1962) Remanent magnetization of ferromagnetic single crystal. J. Geomag. Geoelectr. 14, 113–124.CrossRefGoogle Scholar
  41. Urquhart, H.M.A. and Goldman, J.E. (1956) Magnetostrictive effects in an antiferromagnetic haematite crystal. Phys. Rev. 101, 1443–1450.CrossRefGoogle Scholar
  42. Ward, J.C. (1970) The structure and properties of some iron sulphides. Rev. Pure & Appl. Chem. 20, 175–206.Google Scholar
  43. Westcott-Lewis, M.F. and Parry, L.G. (1971a) Magnetism in rhombohedral iron-titanium oxides. Australian J. Phys. 24, 719–734.Google Scholar
  44. Westcott-Lewis, M.F. and Parry, L.G. (1971b) Thermoremanence in synthetic rhombohedral iron-titanium oxides. Australian J. Phys. 24, 735–742.Google Scholar
  45. Yamamoto, N. (1968) The shift of the spin flip temperature of a- Fe2O3 fine particles. J. Phys. Soc. Japan 24, 23–28.CrossRefGoogle Scholar

Copyright information

© Blackie & Son Ltd 1984

Authors and Affiliations

  • W. O’Reilly
    • 1
  1. 1.University of Newcastle upon TyneUK

Personalised recommendations