Skip to main content

Magnetic properties of other mineral systems

  • Chapter
Rock and Mineral Magnetism

Abstract

Haematite is a much studied and little understood material, and to extract what might be considered the intrinsic magnetic properties, relevant to its role as a remanence carrier, from the body of available data is problematical. It seems that microstructure and extrinsic influences affect more than just the magnetization process parameters in the case of haematite. One problem is that ideal haematite has only a weak magnetization, about 0.5 percent of that of magnetite, and the measured properties of haematite samples are correspondingly susceptible to (say) the distorting effect of undetectable quantities of magnetic contaminants. Studies on highly specified crystals have tended to concentrate on the antiferromagnetic properties, and such experiments are largely irrelevant to the fine-grain remanence-carrying haematite of rock samples. Studies of fine particle samples, prepared by crushing larger crystals, by oxidizing magnetite or by the decomposition or dehydration of a suitable iron-bearing compound, produce a range of values of saturation magnetization (after high field susceptibility has been allowed for). The magnetization also is found to fall after high temperature treatment, in air, of some of the studied material. An absolute prerequisite for an interpretable study of the intrinsic properties or magnetization process in haematite is an exhaustive characterization of the sample material. However, it may be that magnetic properties are more sensitive to (say) the presence of small quantities of maghemite than are other analytical techniques, and only indirect assessment of the material may be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Artman, J.O., Murphy, J.C. and Foner, S. (1965) Magnetic anisotropy in anti ferromagnetic corundum-type sesquioxides. Phys. Rev. 138, A912–A917.

    Article  Google Scholar 

  • Banerjee, S.K. (1971) New grain size limits for the palaeomagnetic stability in haematite. Nature Phys. Sci. 232, 15–16.

    Google Scholar 

  • Besser, P.J., Morrish, A.H. and Searle, C.W. (1967) Magnetocrystalline anisotropy of pure and doped hematite. Phys. Rev. 153, 632–640.

    Article  Google Scholar 

  • Bhimasankaram, V.L.S. and Lewis, M. (1966) Magnetic reversal phenomena in pyrrhotite. Geophys. J.R. Astr. Soc. 11, 485–497.

    Article  Google Scholar 

  • Bozorth, R.M., Walsh, D.E. and Williams, A.J. (1957) Magnetization of haematite-ilmenite system at low temperatures. Phys. Rev. 108, 157–158.

    Article  Google Scholar 

  • Chevallier, R. and Mathieu, S. (1943) Propriétés magnetiques des poudres d’hématites; influence des dimensions des grains. Ann. Phys. 18, 258–288.

    Google Scholar 

  • Collinson, D.W. (1974) The role of pigment and specularite in the remanent magnetization of red sandstones. Geophys. J.R. Astr. Soc. 38, 253–264.

    Article  Google Scholar 

  • Creer, K.M., Hedley, I.G. and O’Reilly, W. (1975) `Magnetic oxides in geomagnetism’, in Magnetic Oxides,(ed. D.J. Craik), John Wiley & Sons, London, New York, Sydney, Toronto, Chapter 11, pp. 649–688.

    Google Scholar 

  • Dankers, P. (1981) Relationship between median destructive field and remanent coercive forces for dispersed natural magnetite, titanomagnetite and hematite. Geophys. J.R. Astr. Soc. 64 447–461.

    Article  Google Scholar 

  • Dunlop, D.J. (1971) Magnetic properties of fine-particle hematite. Ann. G¨¦ophys. 27, 269–293

    Google Scholar 

  • Dunlop, D.J. (1981) The rock magnetism of fine particles. Phys. Earth Planet. Int. 26, 1–26.

    Article  Google Scholar 

  • Dunlop, D.J. and Stirling, J.M. (1977) “Hard” viscous remanent magnetization (VRM) in fine-grained hematite. Geophys. Res. Letts. 4, 163–166.

    Article  Google Scholar 

  • Eaton, J.A. and Morrish, A.H. (1969) Magnetic domains in hematite at and above the Morin transition. J. Appl. Phys. 40, 3180–3185.

    Article  Google Scholar 

  • Evans, M.E., McElhinny, M.W. and Gifford, A.C. (1968) Single domain magnetite and high coercivities in a gabbroic intrusion. Earth Planet. Sci. Letts. 4, 142–146.

    Article  Google Scholar 

  • Flanders, P.J. and Schuele, W. (1964) `Temperature dependent magnetic properties of hematite single crystals, in Proceedings of the International Conference of Magnetism,Nottingham, September 1964, Institute of Physics and the Physical Society, London, pp, 594–596.

    Google Scholar 

  • Fuller, M.D. (1970) Geophysical aspects of paleomagnetism. Grit. Rev. Solid State Sci. 137–219.

    Google Scholar 

  • Halgedahl, S.L. and Fuller, M. (1981) The dependence of magnetic domain structure upon magnetization state in polycrystalline pyrrhotite. Phys. Earth Planet. Int. 26, 93–97.

    Article  Google Scholar 

  • Hedley, L.G. (1968) Chemical remanent magnetization in the FeOOH, Fe2O3 system. Phys. Earth Planet. Int. 1, 103–121.

    Article  Google Scholar 

  • Hedley, I.G. (1971) The weak ferromagnetism of goethite (a-FeOOH). Z. Geophys. 37, 409–420.

    Google Scholar 

  • Hoffman, K.A. (1975) Cation diffusion process and self-reversal of thermoremanent magnetization in the ilmenite-haematite solid solution series. Geophys. J.R. Astr. Soc. 41, 65–80.

    Article  Google Scholar 

  • Hoye, G.S. and Evans, M.E. (1975) Remanent magnetizations in oxidized olivine. Geophys. J.R. Astr. Soc. 41, 139–151.

    Article  Google Scholar 

  • Ishikawa, Y. (1962) Magnetic properties of ilmenite-hematite system at low temperature. J. Phys. Soc. Japan 17, 1835–1844.

    Article  Google Scholar 

  • Ishikawa, Y. and Akimoto, S. (1958) Magnetic property and crystal chemistry of ilmenite (MeTiO3) and hematite (aFe2O3) system, 2: Magnetic property. J. Phys. Soc. Japan 13, 1298–1310.

    Article  Google Scholar 

  • Ishikawa, Y. and Syono, Y. (1963) Order-disorder transformation and reverse thermoremanence in the FeTiO3¡ªFe2O3 system. J. Phys. Chem. Solids 24, 517–528.

    Article  Google Scholar 

  • Jacobs, I.S., Beyerlein, R.A., Foner, S. and Remeika, J.P. (1971) Field induced magnetic phase transitions in antiferromagnetic hematite (a ¡ª Fe2 03). Inter. J. Magnetism 1, 193–208.

    Google Scholar 

  • Lindsley, D.H. (1976) `Experimental studies of oxide minerals’, in Oxide Minerals (ed.: D. Rumble III), Mineralogical Society of America, Washington, D.C., Chapter 2.

    Google Scholar 

  • Merill, R.T. (1968) A possible source for the coercivity of Ilmenite-Hematite minerals. J. Geomag. Geoelectr. 20, 181–185.

    Article  Google Scholar 

  • Moskowitz, B.M. and Hargraves, R.B. (1982) Magnetic changes accompanying the thermal decomposition of nontronite (in air) and its relevance to Martian mineralogy. J. Geophys. Res. 87, 10115–10128.

    Article  Google Scholar 

  • Nagata, T. and Akimoto, S. (1956) Magnetic properties of ferromagnetic ilmenites. Geofis. Pura e Appl. 34, 36–50.

    Article  Google Scholar 

  • N¨¦el, L. and Pauthenet, R. (1952) Etude thermomagn¨¦tique d’un monocristal de Fe2 03 a. C.R. Acad. Sci.(Paris) 234, 2172–2174.

    Google Scholar 

  • Owens, W.H. (1982) A simple model for non-vanishing rotational hysteresis in haematite. Phys. Earth Planet. Int. 27, 106–113.

    Article  Google Scholar 

  • Schwarz, E.J. (1975) Magnetic properties of pyrrhotite and their use in applied geology and geophysics. Geol. Surv. Canada, paper 74–59.

    Google Scholar 

  • Schwarz, E.J. and Vaughan, D.J. (1972) Magnetic phase relations of pyrrhotite. J. Geomag. Geoelectr. 22, 463–470.

    Article  Google Scholar 

  • Searle, C.W. and Morrish, A.H. (1966) A three sublattice theory of weakly ferromagnetic aMe¨®+Fe¨®+Fez,_¨®)03.J. Appl. Phys. 37, 1141–1142.

    Article  Google Scholar 

  • Smith, R.W. and Fuller, M. (1967) Alpha-hematite: stable remanence and memory. Science 156, 1130 1133.

    Google Scholar 

  • Soffel, H.C. (1977) Pseudo-single domain effects and the single domain-multidomain transition in natural pyrrhotite deduced from domain structure observations. J. Geophys. 42, 351–359.

    Google Scholar 

  • Soffel, H.C. (1981) Domain structure of natural fine-grained pyrrhotite in a rock matrix (diabase). Phys. Earth Planet. Int. 26, 98–106.

    Article  Google Scholar 

  • Stephenson, A. and Collinson, D.W. (1974) Lunar magnetic field palaeo-intensities determined by an anhysteretic remanent magnetization method. Earth Planet. Sci. Letts. 23, 220–228.

    Article  Google Scholar 

  • Strangway, D.W., Honea, R.M., McMahon, B.E. and Larson, E.E. (1968) The magnetic properties of naturally occurring goethite. Geophys. J.R. Astr. Soc. 15, 345–359.

    Article  Google Scholar 

  • Syono, Y., Akimoto, S. and Nagata, T. (1962) Remanent magnetization of ferromagnetic single crystal. J. Geomag. Geoelectr. 14, 113–124.

    Article  Google Scholar 

  • Urquhart, H.M.A. and Goldman, J.E. (1956) Magnetostrictive effects in an antiferromagnetic haematite crystal. Phys. Rev. 101, 1443–1450.

    Article  Google Scholar 

  • Ward, J.C. (1970) The structure and properties of some iron sulphides. Rev. Pure & Appl. Chem. 20, 175–206.

    Google Scholar 

  • Westcott-Lewis, M.F. and Parry, L.G. (1971a) Magnetism in rhombohedral iron-titanium oxides. Australian J. Phys. 24, 719–734.

    Google Scholar 

  • Westcott-Lewis, M.F. and Parry, L.G. (1971b) Thermoremanence in synthetic rhombohedral iron-titanium oxides. Australian J. Phys. 24, 735–742.

    Google Scholar 

  • Yamamoto, N. (1968) The shift of the spin flip temperature of a- Fe2O3 fine particles. J. Phys. Soc. Japan 24, 23–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Blackie & Son Ltd

About this chapter

Cite this chapter

O’Reilly, W. (1984). Magnetic properties of other mineral systems. In: Rock and Mineral Magnetism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8468-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8468-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8470-0

  • Online ISBN: 978-1-4684-8468-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics