Magnetic properties of titanomagnetites and titanomaghemites

  • W. O’Reilly


Chapters 3 to 6 have been largely concerned with models for the magnetic behaviour of materials. Chapter 3 dealt with intrinsic properties—those determined by the species of atoms or ions which make up the material, and their interaction with one another in the crystalline environment. Models for the magnetization process (Chapters 4 to 6), i.e. the effect of an applied field, rely on non-intrinsic microstructure, linked to material properties. Chapters 5 to 6 dealt with a special aspect of the model magnetization process in which thermal activation allowed a weak field to impress a relatively strong remanent (non-equilibrium) magnetization, or, in zero field, brought about the removal of a remanence. In this and the following chapter we enter the real world by considering the actual observed properties of magnetic minerals, or assemblages, or intergrowths of minerals, such as occur in the crust of the Earth. Whereas some of the data has indeed been obtained from minerals, i.e. naturally occurring examples of the compounds of interest, much of our knowledge of the magnetic properties of the remanence carriers of rocks is based on laboratory-prepared synthetic analogues. We deal first with intrinsic properties, then with the extrinsic magnetization process and, finally, weak field remanences.


Domain Wall Curie Temperature Saturation Magnetization Coercive Force Curie Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akimoto, S. (1962) Magnetic properties of Fe0¡ªFe203¡ªTiO2 system as a basis of rock magnetism. J. Phys. Soc. Japan 17, (Suppl. B1), 706–710.Google Scholar
  2. Banerjee, S.K., O’Reilly, W., Gibb, T.C. and Greenwood, N.N. (1967) Behaviour of ferrous ions in iron-titanium spinels. J. Phys. Chem. Solids 28, 1328–1335.CrossRefGoogle Scholar
  3. Barton, C.E., McElhinny, M.W. and Edwards, D.J. (1980) Laboratory studies of depositional DRM. Geophys. J.R. Astr. Soc. 61, 355–377.CrossRefGoogle Scholar
  4. Blasse, G. (1964) Crystal chemistry and some magnetic properties of mixed metal oxides with spinel structure. Philips Res. Repts. Suppl. No. 3.Google Scholar
  5. Bleil, U. (1971) Cation distribution in titanomagnetites. Z. Geophys. 37, 305–319.Google Scholar
  6. Butler, R.F. and Banerjee, S.K. (1975) Theoretical single-domain grain size range in magnetite and titanomagnetite. J. Geophys. Res. 80, 4049–4058.CrossRefGoogle Scholar
  7. Clark, D.A. and Schmidt, C.W. (1982) Theoretical analysis of thermomagnetic properties, low temperature hysteresis and domain structure of titanomagnetites. Phys. Earth Planet. Int. 30, 300–316.CrossRefGoogle Scholar
  8. Clauter, D. and Schmidt, V.A. (1981) Shifts in the blocking temperature spectra for magnetite powders as a function of grain size and applied field. Phys. Earth Planet. Int. 26, 81–92.CrossRefGoogle Scholar
  9. Day, R. (1977) TRM and its variation with grain size. J. Geomag. Geoelectr. 29, 233–265.CrossRefGoogle Scholar
  10. Day, R., Fuller, M. and Schmidt, V.A. (1977) Hysteresis properties of titanomagnetites: grain size and compositional dependence. Phys. Earth Planet. Int. 13, 260–267.Google Scholar
  11. Dunlop, D.J. (1973a) Superparamagnetic and single domain threshold sizes in magnetite. J. Geophys. Res. 78, 1780–1793.CrossRefGoogle Scholar
  12. Dunlop, D.J. (1973b) Thermoremanent magnetization in submicroscopic magnetite. J. Geophys. Res. 78, 7602–7613.CrossRefGoogle Scholar
  13. Dunlop, D.J. (1974) Thermal enhancement of magnetic susceptibility. J. Geophys. 40, 439–451.Google Scholar
  14. Dunlop, D.J. (1981) The rock magnetism of fine particles. Phys. Earth Planet. Int. 26, 1–26.CrossRefGoogle Scholar
  15. Dunlop, D.J. and Bina, M-M. (1977) The coercive force spectrum of magnetite at high temperatures: evidence for thermal activation below the blocking temperature. Geophys. J.R. Astr. Soc. 51, 121–147.CrossRefGoogle Scholar
  16. Facey, D. (1983) A comparison between ARM and TRM in synthetic multidomain titano-magnetites. Geophys. J.R. Astr. Soc. 73, 307 (Abstract).Google Scholar
  17. Fletcher, E.J. and O’Reilly, W. (1974) Contribution of Fe’ ions to the magnetocrystalline anisotropy constant K1 of Fe3-x Tix O4(0 < x < 0.1). J. Phys. C. 7, 171–178.CrossRefGoogle Scholar
  18. Fox, J.M.W. and Aitken, M.J. (1980) Cooling rate dependence of thermoremanent magnetization, Nature 283, 462–463.CrossRefGoogle Scholar
  19. Graham, J.W. (1953) Changes in ferromagnetic minerals and their bearing on magnetic properties of rocks. J. Geophys. Res. 58, 243–260.CrossRefGoogle Scholar
  20. Haggerty, S.E. (1976) `Oxidation of opaque mineral oxides in basalts’, in Oxide Minerals (ed. D. Rumble III), Mineralogical Society of America, Washington, D.C., Chapter 4.Google Scholar
  21. Halgedahl, S. and Fuller, M. (1980) Magnetic domain observations of nucleation processes in fine particles of intermediate titanomagnetite. Nature 288, 70–72.Google Scholar
  22. Hauptman, Z. (1974) High temperature oxidation, range of non-stoichiometry and Curie point variation of cation deficient titanomagnetite Fee 4Tio 604+y. Geophys. J.R. astr. Soc. 38, 29–47.CrossRefGoogle Scholar
  23. Heller, F. and Peterson, N. (1982) Self-reversal explanation for the Laschamp/Olby geomagnetic field excursion. Phys. Earth Planet. Int. 30, 358–372.CrossRefGoogle Scholar
  24. Jensen, S.D. and Shive, P.N. (1973) Cation distribution in sintered titanomagnetites. J. Geophys. Res. 78, 8474–8480.CrossRefGoogle Scholar
  25. Keefer, C.M. and Shive, P.N. (1981) Curie temperature and lattice constant reference contours for synthetic titanomaghemites. J. Geophys. Res. 86, 987–998.CrossRefGoogle Scholar
  26. Klapel, G.D. and Shive, P.N. (1974) High temperature magnetostriction of magnetite. J. Geophys. Res. 79, 2629–2633.CrossRefGoogle Scholar
  27. Kushiro, I. (1960) y ¡ª a transition in Fee 03 with pressure. J. Geomag. Geoelectr. 11, 148–151.CrossRefGoogle Scholar
  28. Larson, E., Ozima, M., Ozima, M., Nagata, T. and Strangway, D. (1969) Stability of remanent magnetization of rocks. Geophys. J.R. astr. Soc. 17, 263–292.CrossRefGoogle Scholar
  29. Levi, S. (1974) Some magnetic properties of magnetite as a function of grain size and their implications for palaeomagnetism. Ph.D. thesis, University of Washington.Google Scholar
  30. Levi, S. (1979) The additivity of partial thermal remanent magnetization in magnetite. Geophys. J.R. astr. Soc. 59, 205–218.CrossRefGoogle Scholar
  31. Levi, S. and Merrill, R.T. (1976) A comparison of ARM and TRM in magnetite. Earth Planet. Sci. Letts. 32, 171–184.Google Scholar
  32. Lowrie, W. and Fuller, M. (1971) On the alternating field demagnetization characteristics of multidomain thermoremanent magnetization in magnetite. J. Geophys. Res. 76, 6339–6349.CrossRefGoogle Scholar
  33. Manson, A. J., O’Donovan, J.B. and O’Reilly, W. (1979) Magnetic rotational hysteresis loss in titanomagnetites and titanomaghemites ¡ªapplication to non-destructive mineral identification in basalts. J. Geophys. 46, 185–199.Google Scholar
  34. Nagata, T., Kobayashi, K. and Fuller, M.D. (1964) Identification of magnetite and haematite in rocks by magnetic observation at low temperature. J. Geophys. Res. 69, 2111–2120.CrossRefGoogle Scholar
  35. Nishitani, T. and Kono, M. (1983) Curie temperature and lattice constant of oxidized titano-magnetite. Geophys. J.R. astr. Soc. 74 585–600.Google Scholar
  36. O’Donovan, J.B. and O’Reilly, W. (1980) The temperature dependent cation distribution in titanomagnetites: an experimental test. Phys. Chem. Minerals 5 235–243.Google Scholar
  37. O’Donovan, J.B. and O’Reilly, W. (1982) An experimental study of TRM in Pseudo-singledomain titanomagnetite. Geophys. J.R. Astr. Soc. 69 290 (Abstract).Google Scholar
  38. Ono, K., Chandler, L. and Ito, A. (1968) Mössbauer study of the ulvöspinel, Fe2TiO4. J. Phys. Soc. Japan 25 174–176.CrossRefGoogle Scholar
  39. O’Reilly, W. (1983) The identification of titanomaghemites: model mechanisms for the maghemitization and inversion processes and their magnetic consequences. Phys. Earth Planet. Int. 31 65–76CrossRefGoogle Scholar
  40. O’Reilly, W. and Banerjee, S.K. (1965) Cation distribution in titanomagnetites. Phys. Letts. 17, 237–238.Google Scholar
  41. Özdemir, Ö. and Banerjee, S.K. (1981) An experimental study of magnetic viscosity in synthetic monodomain titanomaghemites: implications for the magnetization of the ocean crust. J. Geophys. Res. 86 11, 864–68.Google Scholar
  42. Özdemir, Ö. and O’Reilly, W. (1981a) High temperature hysteresis and other magnetic properties of synthetic monodomain titatomagnetites. Phys. Earth Planet. Int. 25 406–418.CrossRefGoogle Scholar
  43. Özdemir, Ö. and O’Reilly, W. (1981b) Laboratory synthesis of aluminium-substituted titanomaghemites and their characteristic properties. J. Geophys. 49 93–100.Google Scholar
  44. Özdemir, Ö. and O’Reilly, W. (1982a) An experimental study of the intensity and stability of thermoremanent magnetization acquired by synthetic monodomain titanomagnetite substituted by aluminium. Geophys. J.R. Astr. Soc. 70 141–154.CrossRefGoogle Scholar
  45. Özdemir, Ö. and O’Reilly, W. (1982b) Magnetic hysteresis properties of synthetic monodomain titanomaghemites. Earth Planet. Sci. Letts. 57 437–447.CrossRefGoogle Scholar
  46. Özdemir, Ö. and O’Reilly, W. (1983) An experimental study of thermoremanent magnetization acquired by synthetic monodomain titanomaghemites. J. Geomag. Geoelectr. 34 467–478.CrossRefGoogle Scholar
  47. Parry, L.G. (1965) Magnetic properties of dispersed magnetite powders. Philos. Mag. 11 303–312.CrossRefGoogle Scholar
  48. Petersen, N. and Bleil, U. (1973) Self-reversal of remanent magnetization in synthetic titano-magnetites. Z. Geophys. 39 965–977.Google Scholar
  49. Robins, B.W. (1972) Remanent magnetization in spinel iron oxides. Ph.D. Thesis, University of New South Wales.Google Scholar
  50. Readman, P.W. and O’Reilly, W. (1972) Magnetic properties of oxidized (cation-deficient) titanomagnetites (Fe, Ti)304. J. Geomag. Geoelectr. 24 69–90.CrossRefGoogle Scholar
  51. Roquet, J. (1954) Sur les remanences des oxydes de fer et leur inter¨ºt en g¨¦omagnetisme. Ann. Geophys. 10 226–247, 282–325.Google Scholar
  52. Rahman, A.A., Duncan, A.D. and Parry, L.G. (1973) Magnetization of multidomain magnetite particles. Riv. Ital. Geofis. 22 259–266.Google Scholar
  53. Schmidbauer, E. and Veitch, R.J. (1980) Anhysteretic remanent magnetization of small multi-domain Fe304 particles dispersed in various concentrations in a non-magnetic matrix. J. Geophys. 48 148–152.Google Scholar
  54. Schult, A. (1970) Effect of pressure on the Curie temperature of titanomagnetites (1 ¡ª x)Fe304xFe2Tio4. Earth Planet. Sci. Letts. 10 81–86.CrossRefGoogle Scholar
  55. Soffel, H.C. and Appel, E. (1982) Domain structure of small synthetic titanomagnetite particles and experiments with IRM and TRM. Phys. Earth Planet. Int. 30 348–355.CrossRefGoogle Scholar
  56. Stephenson, A. (1969) The temperature dependent cation distribution in titanomagnetite. Geophys. J.R. Astr. Soc. 18 199–210.CrossRefGoogle Scholar
  57. Stephenson, A. (1972) Spontaneous magnetization curves and Curie points of spinels containing two types of magnetic ion. Philos. Mag. 25 1213–1232.CrossRefGoogle Scholar
  58. Sugiura, N. (1979) ARM, TRM and magnetic interactions: concentration dependence. Earth Planet. Sci. Letts. 42 451–455.CrossRefGoogle Scholar
  59. Syono, Y. (1965) Magnetocrystalline anisotropy and magnetostriction of Fe304¡ªFe2TiO4 series¡ªwith special application to rock magnetism. Japan. J. Geophys. 4 71–143.Google Scholar
  60. Tucker, P. (1981) Low temperature magnetic hysteresis properties of multidomain single-crystal titanomagnetite. Earth Planet. Sci. Letts. 54 167–172.CrossRefGoogle Scholar
  61. Tucker, P. and O’Reilly, W. (1978) A magnetic study of single crystal titanomagnetite (Fez 4Tio 6O4). Phys. Earth Planet. Int. 16 183–189.CrossRefGoogle Scholar
  62. Tucker, P. and O’Reilly, W. (1980a) The acquisition of thermoremanent magnetization by multidomain single crystal titanomagnetite. Geophys. J.R. Astr. Soc. 60 21–36.CrossRefGoogle Scholar
  63. Tucker, P. and O’Reilly, W. (1980b) The laboratory simulation of deuteric oxidation of titano-magnetites: Effect on magnetic properties and stability of thermoremanence. Phys. Earth Planet. Int. 23, 112–133.CrossRefGoogle Scholar
  64. Tucker, P. and O’Reilly, W. (1980c) Reversed thermoremanent magnetization in synthetic titanomagnetites as a consequence of high temperature oxidation. J. Geomag. Geoelectr. 32, 341–355.CrossRefGoogle Scholar

Copyright information

© Blackie & Son Ltd 1984

Authors and Affiliations

  • W. O’Reilly
    • 1
  1. 1.University of Newcastle upon TyneUK

Personalised recommendations