Advertisement

A Review of Two-Photon Physics

  • Susan Cooper

Abstract

This talk is intended as an introduction for those not yet expert in two-photon physics, especially those e+e one-photon physicists who still think of two-photon events as background. I will concentrate on the physics questions involved, especially emphasizing the areas where I feel progress can be made in the near future; and, of necessity, leaving most experimental details to be found in the references. After a quick survey of the field and a few words about kinematics, I will discuss in detail two major fields: the photon structure function and resonance production.

Keywords

Luminosity Function Born Term Gluonium State Photon Structure Function Vector Dominance Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The first no-tag two-photon physics was done by the Mark II: G. S. Abrams et al., Phys. Rev. Lett. 43 (1979) 477.Google Scholar
  2. 2.
    PLUTO) Ch. Berger et al., Phys. Lett. 89B (1981) 287. (TASSO) W. Hillen, Ph.D. Thesis, BONN-IR-81–7 (1980) and E. Hilger, Proc. Int. Workshop on yy Collisions, Amiens, 1980, Published by Springer as Lecture Notes in Physics 134 (1980) .Google Scholar
  3. 3.
    TASSO) N. Wermes, Ph.D. Thesis, BONN-IR-82 (1982).Google Scholar
  4. 4.
    The 10/3 expected for the Han-Nambu integrally charged quark model can be affected by the Q2 of the photons to an extent that it is indistinguishable from the fractionally charged quark model: T. Jayaraman et al., Madras Univ. Preprint MUTP-82/3 (1982).Google Scholar
  5. 5.
    S. Berman et al., Phys. Rev. D4 (1971) 3388;Google Scholar
  6. S. Brodsky et al., Phys. Rev. D5 (1979) 1418 and PRL 41 (1978) 527.Google Scholar
  7. 6.
    (TASSO) R. Brandelik et al., Phys. Lett. 107B (1981) 290. (JADE) W. Bartel et al., Phys. Lett. 107B (1981) 163.Google Scholar
  8. 7.
    P. H. Damgaard, Cornell Lab. of Nucl. Studies Preprint CLNS81/519 (Dec. 1981).Google Scholar
  9. 8.
    (TASSO) R. Brandelik et al., Phys. Lett. 108B (1982) 67; and new preliminary results from JADE and TASSO presented at the Rencontre de Moriond, Les Arcs, France in March 1982 by H. Kolanoski and J. Olsson.Google Scholar
  10. 9.
    The equivalent photon approximation is no longer used by most experimental groups. Exact calculations are available and have been put into useful form in J. Field, Nucl. Phys. B168 (1980) 4J7, and Erratum B1J6 (1980) 545 andCh. Berger and J. Field, Nucl. Phys. Bl 7 (1981) 585.Google Scholar
  11. 10.
    It is a convention from eN scattering that a kinematic factor which suppresses longitudinal photons is removed from LLT and absorbed into aLT. (See, e.g., page 469 in M. Perl’s book High Energy Hadron Interactions published by John Wiley and Sons in 1974.) Keeping this change of definition in mind, we see that the fact that E = LLT/LTT is nearly 1 at low Q2 does not mean that we really have nearly as many longitudinal as transverse photons.Google Scholar
  12. 11.
    PLUTO) Ch. Berger et al., Phys. Lett. 107B (1981) 168.Google Scholar
  13. 12.
    Most groups use an x vs. xmeas matrix to “unfold” their xmeas distribution into an x distribution. However some dependence of the input F2Y might still remain.Google Scholar
  14. 13.
    The exact result for F2Y can be obtained using the formulas for eTT and aST = aLT on page 275 of V. M. Budnev et al., Physics Reports 15 No. 4 (1975) 181.Google Scholar
  15. 14.
    W. Frazer and J. Gunion, Phys. Rev. D20 (1979) 147.CrossRefGoogle Scholar
  16. 15.
    A. J. Buras and D. W. Luke, unpublished, shown in Ref. 11.Google Scholar
  17. 16.
    CELLO) J. Haissinski, Rencontre de Moriond, Les Arcs, France, March 1982 and Orsay Preprint LAL 82/11.Google Scholar
  18. 17.
    JADE) J. Olsson, Rencontre de Moriond, Les Arcs, France, March 1982.Google Scholar
  19. 18.
    Reviewed in F. Gilman, Proc. Int. Conf. on Two Photon Interactions, Lake Tahoe, Calif., 1979.Google Scholar
  20. 19.
    C. N. Yang, Phys. Rev. 77 (1950) 242.CrossRefGoogle Scholar
  21. 20.
    Summarized in Particle Data Group, “Review of Particle Properties,” Rev. Mod. Phys. 52, No. 2 (1980).Google Scholar
  22. 21.
    A. Browman et al., PRL 32 (1974) 1067.CrossRefGoogle Scholar
  23. 22.
    Mark II) G. S. Abrams et al., Phys. Rev. Lett. 43 (1979) 477, P. Jenni et al. sub. to Phys. Rev. D., June 1982, SLAC-PUB2758, LBL-10226, June 1981.Google Scholar
  24. 23.
    JADE) W. Bartel et al., DESY 82–007 (1982).Google Scholar
  25. 24.
    CELLO) H. J. Behrend et al., DESY 82–008 (1982).Google Scholar
  26. 25.
    ryyf predictions are shown in E. Hilger, Proc. 4th Int. Coll. on Photon-Photon Interactions, Paris, 1981.Google Scholar
  27. 26.
    PLUTO) Ch. Berger et al., Phys. Lett. 94B (1980) 254.Google Scholar
  28. 27.
    Mark II) A. Roussarie. SLAC-PUB-2599 and XXth Int. Conf. on High Energy Physics, Madison, Wisconsin, 1980.Google Scholar
  29. A. Roussarie et al., Phys. Lett. 105B (1981) 304.Google Scholar
  30. 28.
    TASSO) R. Brandelik et al., Z. Physik C10 (1981) 117.Google Scholar
  31. 29.
    CELLO) J. Field, private communication.Google Scholar
  32. 30.
    CB) C. Edwards et al., Phys. Lett. 110B (1982) 82.Google Scholar
  33. 31.
    Monte Carlo calculation: (program of J. A. M. Vermaseren): R. Bhattacharya, J. Smith, and G. Grammer, Jr., Phys. Rev. D15 (1977) 3267.Google Scholar
  34. Measurements: (Mark II) A. Roussarie SLAC-PUB-2599 and Proc. XXth Int. Conf. on High Energy Physics, Madison, Wisconsin, 1980.Google Scholar
  35. B. Adeva et al., MIT Tech. Rep. 112 (1982).Google Scholar
  36. 32.
    PLUTO) Ch. Berger et al., DESY 82–004 (1982). Sub, to Nucl. Phys. B.Google Scholar
  37. 33.
    DCI) A. Falvard et al., contributed paper no. 48, Int. Symp. on Lepton-Photon Interactions, Bonn, 1981; Proc. Gamma Gamma Physics, Amiens, Dec. 1981; Phys. Lett. 96B (1980) 402.Google Scholar
  38. 34.
    G. Mennessier, contributed paper No. 42, Int. Symp. on Lepton-Photon Interactions, Bonn, 1981 and Montpellier Preprint PM/81/6 (1981).Google Scholar
  39. 35.
    J. Rosner, Phys. Rev. D24 (1981) 1347.Google Scholar
  40. 36.
    D. Faimann et al., Phys. Lett. 59B (1975) 269.Google Scholar
  41. 37.
    N. N. Biswas or V. P. Kenney et al., PRL 47 (1981) 1378.CrossRefGoogle Scholar
  42. 38.
    Summarized in M. Greco, Proc. Int. Workshop on yy Collisions, Amiens, 1980.Google Scholar
  43. 39.
    J. Babcock and J. Rosner, Phys. Rev. D (1976) 1286.Google Scholar
  44. 40.
    TASSO) private communication and H. Kolanoski, Proc. of Rencontre de Moriond, Les Arcs, France, March 1982.Google Scholar
  45. 41.
    CB) private communication.Google Scholar
  46. 42.
    TASSO) R. Brandelik et al., Phys. Lett. 97B (1980) 448.Google Scholar
  47. 43.
    Mark II) D. L. Burke et al., Phys. Lett. 103B (1981) 153. (CELLO) contributed paper to Int. Conf. on High Energy Physics, Lisbon, 1981.Google Scholar
  48. 44.
    G. Alexander and U. Maor, Tel Aviv Preprint TAUP 1024–82.Google Scholar
  49. 45.
    Mark II) D. L. Scharre et al., Phys. Lett. 97B (1980) 329.Google Scholar
  50. 46.
    (CB) D. L. Scharre, Proc. Int. Symp. on Lepton-Photon Interactions, Bonn, 1981; C. Edwards et al., SLAC PUB-2896 (1982) sub. to PRL.Google Scholar
  51. 47.
    (CB) C. Edwards et al., PRL 48 (1982) 458.Google Scholar
  52. 48.
    Mark II) SLAC-PUB-2941, sub, to Phys. Lett.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Susan Cooper
    • 1
  1. 1.Deutsches Elektronen-Sychrotron DESYHamburgGermany

Personalised recommendations