Advertisement

Is there a Desert beyond the Mountains?

  • C. H. Llewellyn Smith

Abstract

The steps in the argument which lead to the possibility of a “desert” containing no new physics between 102 and 1014 GeV are:
  1. 1.

    Electroweak and strong interactions are described by gauge theories. There is good evidence that all these forces are mediated by spin 1 particles, coupled to “weak isospin” and colour respectively, and gauge theories are the only sensible field theories of elementary vector bosons coupled to such non-commuting charges.

     
  2. 2.

    The gauge theory is SU(3)c × SU(2)L × U(1), which is the simplest model compatible with the data.

     
  3. 3.

    This theory is not complete. It does not explain charge quantization, and it does not really unify electro-weak interactions. It contains far too many parameters — mainly associated with the Higgs system, which supplies one parameter for every mass and mixing angle. It does not explain the existence of different “generations” of quarks and leptons.

     
  4. 4.

    In the conventional gauge theory framework the obvious way to improve the theory is to enlarge the gauge group, thereby reducing the number of forces and perhaps combining more fermions in common multiplets. The simplest step of unifying SU(2) × U(1) turns out to be surprisingly difficult; in particular it is hard to get sin2θw < 3/8. However, if the unification scale is very large (~ 1014 GeV), allowing αs to have decreased to 0(α2,1), it is relatively easy to Grand Unify all three forces. This is tremendously attractive and allows us also to combine quarks and leptons into common multiplets, thus unifying the two different forms of matter.

     
  5. 5.

    Economy and simplicity lead us to the minimal group SU(5).1 Models based on larger groups are more complex and do not have overwhelming compensating advantages. In the minimal version of SU(5) only the W, Z, t and Higgs boson remain to be discovered at low energy and there will then be a desert extending to Mx ~ 4 × 1014 GeV.

     

Keywords

Gauge Theory Higgs Boson Gauge Boson Spectral Function SUSY Breaking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32 (1974) 438.CrossRefGoogle Scholar
  2. P. Langacker, Phys. Rep. 72 (1981) 185.CrossRefGoogle Scholar
  3. J. Ellis, CERN TH 3174 (1981), 1981.Google Scholar
  4. 2.
    M. Yoshimura, Phys. Rev. Lett. 41 (1978) 381.CrossRefGoogle Scholar
  5. J. Ellis, “Grand Unified Theories in Cosmology” to be published in Phil. Trans. Roy. Soc.Google Scholar
  6. 3.
    H. Georgi, H. R. Quinn and S. L. Weinberg, Phys. Rev. Lett. 33 (1974) 351.CrossRefGoogle Scholar
  7. M. Yoshimura, Prog. Th. Phys. 64 (1980) 353–594.CrossRefGoogle Scholar
  8. C. H. Llewellyn Smith, G. G. Ross and J. F. Wheater, Nucl. Phys. B177 (1981) 263.CrossRefGoogle Scholar
  9. S. Weinberg, Phys. Lett. 91B (1980) 51.Google Scholar
  10. J. Ellis, M. K. Gaillard, D. V. Nanopoulos and S. Rudaz, Nucl. Phys. B176 (1980) 61.CrossRefGoogle Scholar
  11. L. Hall, Nucl. Phys. B178 (1981) 75.CrossRefGoogle Scholar
  12. 4.
    J. E. Kim et al., Rev. Mod. Phys. 53 (1981) 211.CrossRefGoogle Scholar
  13. 5.
    W. J. Marciano and A. Sirlin, Nucl. Phys. B159 (1981) 442.Google Scholar
  14. C. H. Llewellyn Smith and J. F. Wheater, Phys. Lett. 105B (1981) 486.Google Scholar
  15. 6.
    F. del Aguila and L. E. Ibanez, Nucl. Phys. B177 (1981) 60.CrossRefGoogle Scholar
  16. L. E. Ibanez, Nucl. Phys. B181 (1981) 105.CrossRefGoogle Scholar
  17. 7.
    M. E. Peskin in Proc. 1981 International Symposium on Lepton and Photon Interactions at High Energy, ed. W. Pfeil, University of Bonn (1981).Google Scholar
  18. R. D. Peccei, Max Planck preprint MPI-PAE PTh 81/81, to be published in Proc. 2nd Erice Workshop on Unification of the Fundamental Interactions and O. W. Greenberg, Maryland Preprint 82–143, to be published in Proc. Orbis Scientiae 1982.Google Scholar
  19. 8.
    S. Weinberg, Phys. Lett. 102B (1981) 401.Google Scholar
  20. 9.
    P. Q. Hung, A. J. Buras and J. D. Bjorken, Phys. Rev. D25 (1982) 805.Google Scholar
  21. 10.
    H. Fritzsch and P. Minkowski, Ann. of Phys. 93 (1975) 193.CrossRefGoogle Scholar
  22. M. S. Chanowitz, J. Ellis and M. K. Gaillard, Nucl. Phys. B124 (1977) 506.CrossRefGoogle Scholar
  23. H. Georgi and D. V. Nanopoulos, Nucl. Phys. B155 (1979) 52.CrossRefGoogle Scholar
  24. 11.
    T. G. Rizzo and G. Senjanovic, Phys. Rev. Lett. 46 (1981) 1315.CrossRefGoogle Scholar
  25. T. G. Rizzo and G. Senjanovic, Phys. Rev. D24 (1981) 704.Google Scholar
  26. T. G. Rizzo and G. Senjanovic, Phys. Rev. D25 (1982) 235.Google Scholar
  27. V. Barger, E. Ma and K. Whisnant, Phys. Rev. Lett. 48 (1982) 1589.CrossRefGoogle Scholar
  28. G. Beall, M. Bander and A. Soni, Phys. Rev. Lett. 48 (1982) 848.CrossRefGoogle Scholar
  29. 12.
    J. C. Pati, A. Salam and J. Strathdee, Phys. Lett. 108B (1982). 121Google Scholar
  30. 13.
    J. Maalampi, Nucl. Phys. B198 (1982) 519.CrossRefGoogle Scholar
  31. P. Ramond, Gainesville preprint UFTP-81–27 to be published in Proc. 2nd Erice Workshop on Unification of the Fundamental Interactions.Google Scholar
  32. 15.
    J. D. Bjorken, Phys. Rev. D19 (1979) 335.Google Scholar
  33. 16.
    TASSO collaboration; quoted by B. Naroska, these proceedings.Google Scholar
  34. 17.
    P. Q. Hung and J. J. Sakurai, Nucl. Phys. B143 (1978) 81.CrossRefGoogle Scholar
  35. J. J. Sakurai, Max Planck preprint MPI-PAE/PTh22/82, to be published in Proc. 1982 Schladming School and XVII Rencontre de Moriond.Google Scholar
  36. 18.
    L. F. Abbott and E. Farhi, Phys. Lett. 101B (1981) 69.Google Scholar
  37. L. F. Abbott and E. Farhi, Nucl. Phys. B189 (1981) 547.CrossRefGoogle Scholar
  38. H. Fritzsch and G. Mandelbaum, Phys. Lett. 102B (1981) 319.Google Scholar
  39. H. Fritzsch and G. Mandelbaum, CERN TH 3203 (1982).Google Scholar
  40. H. Fritzsch CERN TH 3219 (1981).Google Scholar
  41. H. Terazawa, Y. Chikashige and K. Akama, Phys. Rev. D15 (1977) 480.Google Scholar
  42. O. Greenberg and J. Sucher, Phys. Lett. 99B (1981) 339.Google Scholar
  43. R. Barbieri, A. Masiero and R. Mohapatra, Phys. Lett. 101B (1981) 69.Google Scholar
  44. 19.
    J. J. Sakurai, Ann. Phys. 11 (1960) 1.CrossRefGoogle Scholar
  45. 20.
    See the papers by Fritzsch and Mandelbaum (ref. 18).Google Scholar
  46. 21.
    P. Chen and J. J. Sakurai, Phys. Lett. 110E (1982) 481.Google Scholar
  47. 22.
    Fritzsch’s argument (ref. 18) that scalar constituents are excluded because the wave function at the origin vanishes for a p wave bound state is wrong because the photon couples to the derivative of the wave function in this case.Google Scholar
  48. 23.
    A similar analysis in for left right symmetric models gives Mw < 127 GeV. R. Barbieri and R. N. Mohapatra, CONY HEP-8-/13.Google Scholar
  49. R. Kögerler and D. Schildknecht CERN TH 3231 (1982).Google Scholar
  50. H. Fritzsch, D. Schildknecht and R. Kögerler, Phys. Lett. 114B (1982) 157.Google Scholar
  51. 25.
    S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264.CrossRefGoogle Scholar
  52. 26.
    F. Antonelli, M. Consoli, G. Corbo, Phys. Lett. 91B (1980) 90.Google Scholar
  53. M. Veltman, Phys. Lett. 91B (1980) 95.Google Scholar
  54. F. Antonelli, M. Consoli, G. Corbo and O. Pellegrino, Nucl. Phys. B183 (1981) 195.CrossRefGoogle Scholar
  55. A. Sirlin, Phys. Rev. D22 (1980) 971.Google Scholar
  56. W. J. Marciano and A. Sirlin, Phys. Rev. D22 (1980) 2695.Google Scholar
  57. 27.
    E. Ma, Phys. Lett. B100 (1981) 251.Google Scholar
  58. F. del Aguila and A. Mendez, Nucl. Phys. B189 (1981) 212.CrossRefGoogle Scholar
  59. 28.
    For a review and references see V. Barger, Madison preprint MAD/PH/36. See also the papers of Barger et al. cited in ref. 11.Google Scholar
  60. 29.
    V. S. Berezinsky and A. Yu. Smirnov, Phys. Lett. 94B (1980) 505.Google Scholar
  61. 30.
    W. J. Marciano and G. Senjanovic, Phys. Rev. D25 (1982) 3092.Google Scholar
  62. 31.
    K. Wilson (unpublished) apparently first realized the problems with elementary scalar bosons discussed below.Google Scholar
  63. 32.
    E. Gildener and S. Weinberg, Phys. Rev. D13 (1976) 3333.Google Scholar
  64. E. Gildener, Phys. Rev. D14 (1976) 1667.Google Scholar
  65. 33.
    M. Veltman, Acta Physics Polonica B12 (1981) 437.Google Scholar
  66. 34.
    S. Weinberg, Phys. Rev. D13 (1976) 976.Google Scholar
  67. S. Weinberg, Phys. Rev. D19 (1979) 1277.Google Scholar
  68. L. Susskind, Phys. Rev. D20 (1979) 2619.Google Scholar
  69. 35.
    S. Dimopoulos and L. Susskind, Nucl. Phys. B155 (1979) 237.CrossRefGoogle Scholar
  70. E. Eichten and K. Lane, Phys. Lett. 90B (1980) 125.Google Scholar
  71. For a critical review see J. Ellis in Proc. 1981 SLAC Summer School, SLAC report 245.Google Scholar
  72. 37.
    J. Wess and B. Zumino, Nucl. Phys. B70 (1974) 39.CrossRefGoogle Scholar
  73. D. V. Volkov and V. P. Akulov, Phys. Lett. 46B (1973) 109.Google Scholar
  74. D. V. Volkov and V. P. Akulov, Teor. Mat. Fiz. 18 (1974) 39.Google Scholar
  75. E. Witten, Nucl. Phys. B186 (1981) 513.CrossRefGoogle Scholar
  76. M. Dine, W. Fischler and M. Srednicki, Nucl. Phys. B189 (1981) 575.CrossRefGoogle Scholar
  77. S. Dimopoulos and S. Raby, Nucl. Phys. B192 (1981) 353.CrossRefGoogle Scholar
  78. S. Dimopoulos and H. Georgi, Nucl. Phys. B193 (1981) 150.CrossRefGoogle Scholar
  79. N. Sakai, Z. Phys. C11 (1982) 153.Google Scholar
  80. P. Fayet Phys. Lett. 69B (1977) 489.Google Scholar
  81. S. Ferrara, C. H. Llewellyn Smith, P. Fayet, D. V. Nanopoulos, J. Ellis, presented at the CERN Supersymmetry Workshop, April 1982, to be published in Physics Reports.Google Scholar
  82. 38.
    J. Ellis, M. K. Gaillard and B. Zumino, Phys. Lett. 94B (1980) 343.Google Scholar
  83. J. Ellis in ref. 1 and CERN TH3206 (1981) to be published in Proc. 2nd Erice Workshop on Unification of the Fundamental Interactions.Google Scholar
  84. 39.
    R. Haag, J. T. Lopuszanski and M. Sohnius, Nucl. Phys. B88 (1975) 257.CrossRefGoogle Scholar
  85. 40.
    The subsequent presentation is a greatly abbreviated version of my paper quoted in ref. 37 where fuller references may be found.Google Scholar
  86. 41.
    S. Weinberg, Harvard preprint HUTP 81/A022.Google Scholar
  87. 42.
    J. Ellis and D. V. Nanopoulos, Phys. Lett. 110B (1982) 44.Google Scholar
  88. 43.
    S. Deser and B. Zumino, Phys. Rev. Lett. 38 (1977) 1433.CrossRefGoogle Scholar
  89. E. Cremmer et al., Phys. Lett. 79B (1978) 231.Google Scholar
  90. 44.
    L. Ibanez and G. G. Ross, Phys. Lett. 110B (1982) 215.Google Scholar
  91. L. Ibanez, G. G. Ross and J. Ellis, Rutherford preprint RL 82–024, have shown that this model allows the very interesting possibility Ass - Mx or Mplanck’ The mass guesstimates are from G. G. Ross and J. Ellis, forthcoming CERN preprint.Google Scholar
  92. 45.
    G. Kane and J. Leveille, Phys. Lett. 112B (1982) 227.Google Scholar
  93. P. R. Harrison and C. H. Llewellyn Smith (Oxford preprint 51/82).Google Scholar
  94. 46.
    S. K. Jones and C. H. Llewellyn Smith (Oxford preprint in preparation).Google Scholar
  95. 47.
    G. Barbiellini et al., DESY 79/67. (An updated version of this paper will appear in a Physics Report by the LEP exotic particles group.)Google Scholar
  96. 48.
    CELLO collaboration (H. J. Behrend et al.) DESY 82–021.Google Scholar
  97. JADE collaboration (W. Bartel et al.) DESY 82–023.Google Scholar
  98. MARK J collaboration (B. Adeva et al.) MIT report 125 (1982)Google Scholar
  99. 49.
    G. Ross and J. Ellis, ref. 44.Google Scholar
  100. 50.
    S. Dimopoulos, S. Raby and F. Wilczek, Phys. Rev. D24 (1981) 1681.Google Scholar
  101. L. E. Ibanez and G. G. Ross, Phys. Lett. 105B (1981) 439.Google Scholar
  102. M. B. Einhorn and D. R. T. Jones, Nucl. Phys. B196 (1982) 475.CrossRefGoogle Scholar
  103. J. Ellis, D. V. Nanopoulos and S. Rudaz, Nucl. Phys. B202 (1982) 43.CrossRefGoogle Scholar
  104. Y. Igarashi, J. Kubo and S. Sakakibara, Dortmund preprint DOTH 82/09.Google Scholar
  105. 51.
    N. Sakai and S. Yanagida, Nucl. Phys. B197 (1982) 533.CrossRefGoogle Scholar
  106. S. Dimopoulos, S. Raby, F. Wilczek, Phys. Lett. 112B (1982) 133.Google Scholar
  107. J. Ellis, D. V. Nanopoulos and S. Rudaz (ref. 50).Google Scholar
  108. 52.
    For a careful review see J. Ellis, ref. 1.Google Scholar
  109. 53.
    For a review see G. Rajasekaran, KEK TH 45 (1982).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • C. H. Llewellyn Smith
    • 1
  1. 1.Department of Theoretical PhysicsUniversity of OxfordOxfordEngland

Personalised recommendations