Advertisement

QCD and the Space-Time Evolution of High-Energy e+e, \(p\bar p\), and Heavy Ion Collisions

  • J. D. Bjorken

Abstract

With QCD the generally uncontested theory of the strong interactions, it is natural that descriptions of high energy collisions nowadays tend to use the QCD language of quarks and gluons. Nevertheless, we usually don’t observe the quarks and gluons--we see hadrons. This creates problems--problems that lead directly to the outstanding issue facing QCD, that of quark and gluon confinement. Some processes, such as e+e annihilation into \(q\bar q\) or \(q\bar qg\) appear to permit a relatively easy description in terms of the quark and gluon language. Take the man in the street to a typical PEP or PETRA experiment and show him the on-line displays of two- and three-jet events, and he may well get the idea. He needn’t be a theorist or even experimentalist to be able to see the quarks and gluons. In fact, he would do almost as well as the professionals in deciding which of the three jets is the gluon.

Keywords

Soft Gluon High Energy Collision Inclusive Spectrum Initial Energy Density Local Sound Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For reviews, see A. Mueller, Physics Repts. 73, 237 (1981);CrossRefGoogle Scholar
  2. G. Altarelli, Physics Repts. 81, 1 (1982).CrossRefGoogle Scholar
  3. 2.
    E. Feinberg and I. Ya. Pomeranchuk, Nuovo Cimento Suppl. 3, Ser. 10, 652 (1956).CrossRefGoogle Scholar
  4. 3.
    See J. D. Bjorken, Proceedings of the 1979 SLAC Summer Institute on Particle Physics, ed. A. Mosher, for some details of the apparatus. There may be some problems, not considered there, with regard to spontaneous pair creation by the strong electromagnetic fields. I thank J. Hamilton for some stimulating conversations on practicalities.Google Scholar
  5. 4.
    K. Konishi, A. Ukawa, and G. Veneziano, Nucl. Phys. B157, 45 (1979);CrossRefGoogle Scholar
  6. K. Konishi, A. Ukawa, and G. Veneziano, Phys. Letts. 78B, 243 (1978);CrossRefGoogle Scholar
  7. K. Konishi, A. Ukawa, and G. Veneziano, Phys. Letts. 80B, 259 (l979).Google Scholar
  8. 5.
    A. Bassetto, M. Ciafaloni, G. Marchesini, and A. Mueller, University of Florence preprint 82/11.Google Scholar
  9. 6.
    S. Gupta and H. Quinn, Phys. Rev. D25, 838 (1982).Google Scholar
  10. 7.
    For example, the Lund model; see B. Andersson, these proceedings; also B. Andersson, G. Gustafson, and T. Sjöstrand, Nucl. Phys. B197, 45 (1982).Google Scholar
  11. 8.
    A more optimistic viewpoint prevails for the Lund model, see Ref. 7.Google Scholar
  12. 9.
    Collected papers of L. D. Landau,“ ed. D. Ter Haar, Gordon and Breach (N.Y.), 1965.Google Scholar
  13. 10.
    P. Carruthers and Minh Duong Van, Phys. Letters 4B, 597 (1972);Google Scholar
  14. P. Carruthers and Minh Duong Van, Phys. Rev. D8, 7 (1973).CrossRefGoogle Scholar
  15. A rather extensive treatment is given by F. Cooper, G. Frye, and E. Schonberg, Phys. Rev. Dll, 192 (1974).Google Scholar
  16. 11.
    See, for example, E. Shuryak, Phys. Reports 61, 71 (1979).CrossRefGoogle Scholar
  17. Also, Proceedings of the Bielefeld Workshop on Quark Matter Formation in Heavy Ion Collisions, May 1982, World Scientific Publishing Co. (Singapore), to be published.Google Scholar
  18. 12.
    J. Bjorken, in preparation.Google Scholar
  19. 13.
    This conclusion has been found by others, in particular compare A. Mueller, Proceedings of the 1981 Isabelle Summer Workshop, ed. H. Gordon, BNL 51443, p. 636.Google Scholar
  20. 14.
    J. Collins and M. Perry, Phys. Rev. Letters 34, 1353 (1975).CrossRefGoogle Scholar
  21. 15.
    For exampleGoogle Scholar
  22. L. McLerran and B. Svetitsky, Physics Letters 98B, 195 (1981);Google Scholar
  23. McLerran and B. Svetitsky, Phys. Rev. D24, 450 (1981);CrossRefGoogle Scholar
  24. J. Engels, F. Karsch, I. Montvay, and H. Satz, Phys. Letters 101B, 89 (1981);Google Scholar
  25. K. Kajantie, C. Montonen, and H. Pietarinen, Zeit. Phys. C9, 253 (1981);Google Scholar
  26. J. Kuti, J. Polonyî, and K. Szlachanyi, Phys. Letters 98B, 199 (1981);Google Scholar
  27. I. Montvay and H. Pietarinen, University of Helsinki preprint HU-TFT-82–8; DESY 81–077 (1981);Google Scholar
  28. D. Boal, J. Schachter, and R. Woloshyn, TRIUMF preprint TRI-PP82–14.Google Scholar
  29. 16.
    This has been investigated by G. Baym and W. Czyz (private communication).Google Scholar
  30. 17.
    G. Baym (private communication).Google Scholar
  31. 18.
    R. Anishetty, P. Koehler, and L. McLerran, Phys. Rev. D22, 2793 (1980).CrossRefGoogle Scholar
  32. 19.
    The importance of distinguishing quark and gluon interactions in nuclear matter has been emphasized by A. Krzywicki, J. Engels, B. Petersson, and U. Sukhatme, Phys. Lett. 85B, 407 (1979).Google Scholar
  33. 20.
    See, for example, A. Buras, Proceedings of the 1981 International Symposium on Lepton and Photon Interactions at High Energies, ed. W. Pfeil. ( Univ. Bonn, 1981 ).Google Scholar
  34. 21.
    Z. Koba, H. Nielsen, and P. Olesen, Nucl. Phys. B40, 317 (1972).CrossRefGoogle Scholar
  35. 22.
    S. Barshay, Phys. Lett. 42B, 457 (1972);Google Scholar
  36. S. Barshay, Lett. Nuovo Cimento 7, 671 (1973);CrossRefGoogle Scholar
  37. Z. Koba and A. Buras, Lett. Nuovo Cimento 6, 629 (1973);CrossRefGoogle Scholar
  38. A. Buras, J. Dethlefsen, and Z. Koba, Acta Physica Polonica B5, 473 (1974) and also T. T. Chou and C. N. Yang, SUNY (Stony Brook) preprint (1982).Google Scholar
  39. 23.
    UA5 Collaboration: K. Alpgard et al., Phys. Lett. 107B, 310, 315 (1981).Google Scholar
  40. See also N. Yamdagni, these proceedings.Google Scholar
  41. 24.
    See for example: J. Kogut and L. Susskind, Phys. Repts. 8, 75 (1973).CrossRefGoogle Scholar
  42. 25.
    L. Caneschi and R. Jengo, Nucl. Phys. B89, 19 (1975).CrossRefGoogle Scholar
  43. 26.
    For a summary, see A. White, Fermilab preprint FERMILAB-CONF82/16/THY.Google Scholar
  44. 27.
    TASSO Collaboration, R. Brandelik et-Phys. Lett. 100B, 357 (1981). I do not know of an e e analysis parallel to the UA5 analysis. This would be nice to see.Google Scholar
  45. 28.
    G. Fox and R. Kelly, Caltech preprint CALT68–890 (1982).Google Scholar
  46. 29.
    M. Pimia, these proceedings.Google Scholar
  47. 30.
    An initial attempt in this direction is given by J. Kapusta, CERN preprint, to be published in the Proceedings of the 17th Rencontre de Moriond, Les Arcs, March 1982, ed. Tran Thanh Van.Google Scholar
  48. 31.
    This has been worked out for a conjectured hydrodynamic description of e e annihilation. See in particular F. Cooper et al., Ref. 10, for the formalism, and Ref. 30 for a short discussion.Google Scholar
  49. 32.
    C. DeMarzo et al., Physics Letters 112B, 173 (1982).Google Scholar
  50. 33.
    P. Darriulat, Ann. Rev. Nucl. Sci. 30, 159 (1980).CrossRefGoogle Scholar
  51. 34.
    J. D. Bjorken, Phys. Rev. D8, 4098 (1973).Google Scholar
  52. 35.
    G. Farrar and S. Jackson, Phys. Rev. Lett. 43, 246 (1979);CrossRefGoogle Scholar
  53. S. Brodsky and G. Lepage, Phys. Rev. Lett. 43, 545 (1979);CrossRefGoogle Scholar
  54. Brodsky and G. Lepage, Phys. Lett. 87B, 359 (1979);Google Scholar
  55. A. Duncan and A. Mueller, Phys. Rev. D21, 1636 (1980).CrossRefGoogle Scholar
  56. 36.
    A. Mueller, Columbia University preprint CU-TP-232, to be published in the proceedings of the 17th Moriond Conference (op. dit.; reference 15).Google Scholar
  57. 37.
    J. H. Cobb et al., Phys. Rev. Letts. 40, 1420 (1978); A. Angelis et al., Nucl. Physics B (to be published); Fermilab proposal P-711 (D. Levinthal, spokesperson).Google Scholar
  58. 38.
    A. DeRujula, R. Giles, and R. Jaffe, Phys. Rev. D17, 285 (1978).Google Scholar
  59. 39.
    See references 11 and 12; also, T. D. Lee, Columbia University preprint CU-TP-226.Google Scholar
  60. 40.
    For an example, compare J. Bjorken and L. McLerran, Phys. Rev. D20, 2353 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. D. Bjorken
    • 1
  1. 1.Fermi National Accelerator LaboratoryBataviaUSA

Personalised recommendations