Skip to main content

QCD and the Space-Time Evolution of High-Energy e+e, \(p\bar p\), and Heavy Ion Collisions

  • Chapter
Physics in Collision
  • 64 Accesses

Abstract

With QCD the generally uncontested theory of the strong interactions, it is natural that descriptions of high energy collisions nowadays tend to use the QCD language of quarks and gluons. Nevertheless, we usually don’t observe the quarks and gluons--we see hadrons. This creates problems--problems that lead directly to the outstanding issue facing QCD, that of quark and gluon confinement. Some processes, such as e+e annihilation into \(q\bar q\) or \(q\bar qg\) appear to permit a relatively easy description in terms of the quark and gluon language. Take the man in the street to a typical PEP or PETRA experiment and show him the on-line displays of two- and three-jet events, and he may well get the idea. He needn’t be a theorist or even experimentalist to be able to see the quarks and gluons. In fact, he would do almost as well as the professionals in deciding which of the three jets is the gluon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For reviews, see A. Mueller, Physics Repts. 73, 237 (1981);

    Article  Google Scholar 

  2. G. Altarelli, Physics Repts. 81, 1 (1982).

    Article  Google Scholar 

  3. E. Feinberg and I. Ya. Pomeranchuk, Nuovo Cimento Suppl. 3, Ser. 10, 652 (1956).

    Article  Google Scholar 

  4. See J. D. Bjorken, Proceedings of the 1979 SLAC Summer Institute on Particle Physics, ed. A. Mosher, for some details of the apparatus. There may be some problems, not considered there, with regard to spontaneous pair creation by the strong electromagnetic fields. I thank J. Hamilton for some stimulating conversations on practicalities.

    Google Scholar 

  5. K. Konishi, A. Ukawa, and G. Veneziano, Nucl. Phys. B157, 45 (1979);

    Article  Google Scholar 

  6. K. Konishi, A. Ukawa, and G. Veneziano, Phys. Letts. 78B, 243 (1978);

    Article  Google Scholar 

  7. K. Konishi, A. Ukawa, and G. Veneziano, Phys. Letts. 80B, 259 (l979).

    Google Scholar 

  8. A. Bassetto, M. Ciafaloni, G. Marchesini, and A. Mueller, University of Florence preprint 82/11.

    Google Scholar 

  9. S. Gupta and H. Quinn, Phys. Rev. D25, 838 (1982).

    Google Scholar 

  10. For example, the Lund model; see B. Andersson, these proceedings; also B. Andersson, G. Gustafson, and T. Sjöstrand, Nucl. Phys. B197, 45 (1982).

    Google Scholar 

  11. A more optimistic viewpoint prevails for the Lund model, see Ref. 7.

    Google Scholar 

  12. Collected papers of L. D. Landau,“ ed. D. Ter Haar, Gordon and Breach (N.Y.), 1965.

    Google Scholar 

  13. P. Carruthers and Minh Duong Van, Phys. Letters 4B, 597 (1972);

    Google Scholar 

  14. P. Carruthers and Minh Duong Van, Phys. Rev. D8, 7 (1973).

    Article  Google Scholar 

  15. A rather extensive treatment is given by F. Cooper, G. Frye, and E. Schonberg, Phys. Rev. Dll, 192 (1974).

    Google Scholar 

  16. See, for example, E. Shuryak, Phys. Reports 61, 71 (1979).

    Article  Google Scholar 

  17. Also, Proceedings of the Bielefeld Workshop on Quark Matter Formation in Heavy Ion Collisions, May 1982, World Scientific Publishing Co. (Singapore), to be published.

    Google Scholar 

  18. J. Bjorken, in preparation.

    Google Scholar 

  19. This conclusion has been found by others, in particular compare A. Mueller, Proceedings of the 1981 Isabelle Summer Workshop, ed. H. Gordon, BNL 51443, p. 636.

    Google Scholar 

  20. J. Collins and M. Perry, Phys. Rev. Letters 34, 1353 (1975).

    Article  Google Scholar 

  21. For example

    Google Scholar 

  22. L. McLerran and B. Svetitsky, Physics Letters 98B, 195 (1981);

    Google Scholar 

  23. McLerran and B. Svetitsky, Phys. Rev. D24, 450 (1981);

    Article  Google Scholar 

  24. J. Engels, F. Karsch, I. Montvay, and H. Satz, Phys. Letters 101B, 89 (1981);

    Google Scholar 

  25. K. Kajantie, C. Montonen, and H. Pietarinen, Zeit. Phys. C9, 253 (1981);

    Google Scholar 

  26. J. Kuti, J. Polonyî, and K. Szlachanyi, Phys. Letters 98B, 199 (1981);

    Google Scholar 

  27. I. Montvay and H. Pietarinen, University of Helsinki preprint HU-TFT-82–8; DESY 81–077 (1981);

    Google Scholar 

  28. D. Boal, J. Schachter, and R. Woloshyn, TRIUMF preprint TRI-PP82–14.

    Google Scholar 

  29. This has been investigated by G. Baym and W. Czyz (private communication).

    Google Scholar 

  30. G. Baym (private communication).

    Google Scholar 

  31. R. Anishetty, P. Koehler, and L. McLerran, Phys. Rev. D22, 2793 (1980).

    Article  Google Scholar 

  32. The importance of distinguishing quark and gluon interactions in nuclear matter has been emphasized by A. Krzywicki, J. Engels, B. Petersson, and U. Sukhatme, Phys. Lett. 85B, 407 (1979).

    Google Scholar 

  33. See, for example, A. Buras, Proceedings of the 1981 International Symposium on Lepton and Photon Interactions at High Energies, ed. W. Pfeil. ( Univ. Bonn, 1981 ).

    Google Scholar 

  34. Z. Koba, H. Nielsen, and P. Olesen, Nucl. Phys. B40, 317 (1972).

    Article  Google Scholar 

  35. S. Barshay, Phys. Lett. 42B, 457 (1972);

    Google Scholar 

  36. S. Barshay, Lett. Nuovo Cimento 7, 671 (1973);

    Article  Google Scholar 

  37. Z. Koba and A. Buras, Lett. Nuovo Cimento 6, 629 (1973);

    Article  Google Scholar 

  38. A. Buras, J. Dethlefsen, and Z. Koba, Acta Physica Polonica B5, 473 (1974) and also T. T. Chou and C. N. Yang, SUNY (Stony Brook) preprint (1982).

    Google Scholar 

  39. UA5 Collaboration: K. Alpgard et al., Phys. Lett. 107B, 310, 315 (1981).

    Google Scholar 

  40. See also N. Yamdagni, these proceedings.

    Google Scholar 

  41. See for example: J. Kogut and L. Susskind, Phys. Repts. 8, 75 (1973).

    Article  Google Scholar 

  42. L. Caneschi and R. Jengo, Nucl. Phys. B89, 19 (1975).

    Article  Google Scholar 

  43. For a summary, see A. White, Fermilab preprint FERMILAB-CONF82/16/THY.

    Google Scholar 

  44. TASSO Collaboration, R. Brandelik et-Phys. Lett. 100B, 357 (1981). I do not know of an e e analysis parallel to the UA5 analysis. This would be nice to see.

    Google Scholar 

  45. G. Fox and R. Kelly, Caltech preprint CALT68–890 (1982).

    Google Scholar 

  46. M. Pimia, these proceedings.

    Google Scholar 

  47. An initial attempt in this direction is given by J. Kapusta, CERN preprint, to be published in the Proceedings of the 17th Rencontre de Moriond, Les Arcs, March 1982, ed. Tran Thanh Van.

    Google Scholar 

  48. This has been worked out for a conjectured hydrodynamic description of e e annihilation. See in particular F. Cooper et al., Ref. 10, for the formalism, and Ref. 30 for a short discussion.

    Google Scholar 

  49. C. DeMarzo et al., Physics Letters 112B, 173 (1982).

    Google Scholar 

  50. P. Darriulat, Ann. Rev. Nucl. Sci. 30, 159 (1980).

    Article  Google Scholar 

  51. J. D. Bjorken, Phys. Rev. D8, 4098 (1973).

    Google Scholar 

  52. G. Farrar and S. Jackson, Phys. Rev. Lett. 43, 246 (1979);

    Article  Google Scholar 

  53. S. Brodsky and G. Lepage, Phys. Rev. Lett. 43, 545 (1979);

    Article  Google Scholar 

  54. Brodsky and G. Lepage, Phys. Lett. 87B, 359 (1979);

    Google Scholar 

  55. A. Duncan and A. Mueller, Phys. Rev. D21, 1636 (1980).

    Article  Google Scholar 

  56. A. Mueller, Columbia University preprint CU-TP-232, to be published in the proceedings of the 17th Moriond Conference (op. dit.; reference 15).

    Google Scholar 

  57. J. H. Cobb et al., Phys. Rev. Letts. 40, 1420 (1978); A. Angelis et al., Nucl. Physics B (to be published); Fermilab proposal P-711 (D. Levinthal, spokesperson).

    Google Scholar 

  58. A. DeRujula, R. Giles, and R. Jaffe, Phys. Rev. D17, 285 (1978).

    Google Scholar 

  59. See references 11 and 12; also, T. D. Lee, Columbia University preprint CU-TP-226.

    Google Scholar 

  60. For an example, compare J. Bjorken and L. McLerran, Phys. Rev. D20, 2353 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Bjorken, J.D. (1983). QCD and the Space-Time Evolution of High-Energy e+e, \(p\bar p\), and Heavy Ion Collisions. In: Carlson, P., Trower, W.P. (eds) Physics in Collision. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8465-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8465-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8467-0

  • Online ISBN: 978-1-4684-8465-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics