New Techniques for Estimating Fungal Biomass in Foods

  • M. A. Cousin
  • D. A. A. Mossel
  • J. W. Hastings
  • W. Y. J. Tsai
  • L. B. Bullerman
  • A. P. Williams
  • J. M. Wood
  • A. C. M. Weijman
  • G. W. Van Eijk
  • W. Windig
  • R. A. Samson
Part of the NATO ASI Series book series (NSSA, volume 122)


Motives for investigating alternatives to plate (viable) counts for estimating fungal colonization of foods are as follows:
  1. 1.

    Viable counts estimate the number of colony-forming units (cfu) of fungi, which may be fragments of mycelium of widely varying dimensions, one or several sexual or asexual spores or yeast cells. Factors affecting viable counts include the degree of homogenization to which a sample has been subjected, the technique, medium, diluent and temperature of incubation as well as the history of the food before examination. Mycelial fragments in particular are likely to lose viability rapidly during storage of foods at reduced aw.

  2. 2.

    Viable counts give no indication of the content of dead fungal biomass, which is useful for retrospective information concerning the quality of raw materials used in processed foods. Even foods that have received minimal treatment may contain significant proportions of non-viable mycelium.

  3. 3.

    When fungal counts are determined to assess the shelf life of products, there is a need to know if the fungi detected are capable of growing in and spoiling the food in question. Hence, tests for specific metabolic activity and/or specific groups of fungi may be more useful than total viable counts.



High Performance Liquid Chromatographic Detection Time Viable Count Muramic Acid Mold Count 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. COUSIN, H. A., ZEIDLER, C. S. & NELSON, P. E. 1984 Chemical detection of mold in processed foods. Journal of Food Science 49, 439–445.CrossRefGoogle Scholar
  2. JARVIS, B. 1977 A chemical method for the estimation of mold in tomato products. Journal of Food Technology 12, 581–591.CrossRefGoogle Scholar
  3. LIN, H. H. & COUSIN, H. A. 1985 Detection of mold in processed foods by high performance liquid chromatography. Journal of Food Protection 48, 671–678.Google Scholar
  4. RIDE, J. P. & DRYSDALE, R. B. 1971 A chemical method for estimating Fusarium oxysporum f. lycopersici in infected tomato plants. Physiological Plant Pathology 1, 409–420.CrossRefGoogle Scholar
  5. RIDE, J. P. & DRYSDALE, R. B. 1972 A rapid method for the chemical estimation of filamentous fungi in plant tissues. Physiological Plant Pathology 2, 7–15.CrossRefGoogle Scholar
  6. TSUJI, A., KINOSHITA, T. & HOSHINO, M. 1969 Analytical chemical studies on amino sugars. II. Determination of hexosamines using 3-methyl-2-benzo-thiazolene hydrazone hydrochloride. Chemical Pharmaceutical Bulletin 17, 1505–1510.CrossRefGoogle Scholar
  7. BARTL, B., VANOUSKOVA, S. & ROUBALOVA, V. 1984 Some rapid methods in food microbiology. In Microbiological Associations and Interactions in Food. ed. Kiss, I., Deâk, T. & Incze, K. pp. 213–218. Budapest: Akademiai.Google Scholar
  8. BOMAR, M. T. 1983 Rapid determination of critical bacterial counts in foods. Aliments 22, 189–194.Google Scholar
  9. JARVIS, B. 1978 Methods for detecting fungi in foods and beverages. In Food and Beverage Mycology ed. BEUCHAT, L. R. pp. 471–504. Westport, CT: AVI Publ. Inc.Google Scholar
  10. JARVIS, B., SEILER, D. A. L., OULD, J. L. & WILLIAMS, A. P. 1983 Observations on the enumeration of molds in food and feedstuffs. Journal of Applied Bacteriology 55, 325–336.CrossRefGoogle Scholar
  11. KOBURGER, J. A. & NORDEN, A. R. 1975 Fungi in foods VII. A comparison of the surface, pour plate and most probable number methods for enumeration of yeasts and molds. Journal of Milk and Food Technology 38, 745–756.Google Scholar
  12. SANSING, G. A. & CIEGLER, A. 1973 Mass propagation of conidia from several Aspergillus and Penicillium species. Applied Microbiology 26, 830–831.Google Scholar
  13. SPECK, M. L. (ed.) 1976 Compendium of Methods for the Microbiological Examination of Foods. Washington, D.C.: American Public Health Association.Google Scholar
  14. STEEL, R. G. & TORRIE, J. H. 1980 Principles and Procedures of Statistics, a Biometrical Approach. 2nd edn. p. 235. New York: McGraw-Hill Book Co.Google Scholar
  15. TAN, S. T., MAXCY, R. B. & STROUP, W. W. 1983 Colony-forming unit enumeration by a plate-MPN method. Journal of Food Protection 46, 836–841.Google Scholar
  16. COCHRANE, V. W. 1965 Physiology of Fungi. New York: John Wiley & Sons Inc.Google Scholar
  17. WOOD, J. M., LACH, V. H. & JARVIS, B. 1978 Evaluation of Impedimetric Methods for the Rapid Estimation of Bacterial Populations in Foods. Leatherhead Food R. A. Research Report No. 289.Google Scholar
  18. BARTNICKI-GARCIA, S. 1968 Cell wall chemistry, morphogenesis and taxonomy of fungi. Annual Review of Microbiology 22, 87–108.CrossRefGoogle Scholar
  19. BEUCHAT, L. R. (ed.) 1978 Food and Beverage Mycology. Westport, CT: AVI Publ., Inc.Google Scholar
  20. COONROD, J. D., KUNZ, L. J. & FERRARO, M. J. (eds.) 1983 Direct Detection of Microorganisms in Clinical Samples. Orlando: Academic Press.Google Scholar
  21. D’AMATO, R. F., HOLMES, B. & BOTTONE, E. J. 1981 The systems approach to microbiology. CRC Critical Reviews in Microbiology 9, 1–44.CrossRefGoogle Scholar
  22. DE REPENTIGNY, L., KUYKENDALL, R. J. & REISS, E. 1983 Simultaneous determination of arabinitol and mannose by gas liquid chromatography in experimental candidiasis. Journal of Clinical Microbiology 17, 1166–1169.Google Scholar
  23. ESHUIS, W., KISTEMAKER, P. G. & MEUZELAAR, H. L. C. 1977 Some numerical aspects of reproducibility and specificity. In Analytical Pyrolysis. eds. JONES, C. E. R & CRAMERS, C. A. pp. 151–166. Amsterdam: Elsevier Scientific Publ. Co.Google Scholar
  24. GILBERT, J. & SELF, R. 1981 Advances in the analysis of trace organic constituents in the diet with particular reference to mass spectrometry. Chemical Society Reviews 10, 255–269.CrossRefGoogle Scholar
  25. GOULD, W. A. 1983 Tomato Production Processing and Quality Evaluation. Westport, CT: AVI Publ., Inc.Google Scholar
  26. HICKS, R. E. & NEWELL, S. Y. 1983 An improved gas chromatographic method for measuring glucosamine and muramic acid concentrations. Analytical Biochemistry 128, 438–445.CrossRefGoogle Scholar
  27. LOGAN, C. 1981 Gangrene. In Compendium of Potato Diseases. ed. LOGAN, C. pp. 57–58. American Phytopathology Society.Google Scholar
  28. MEUZELAAR, H. L. C., HAVERKAMP, J. & HILEMAN, F. D. 1982 Pyrolysis Mass Spectrometry of Recent and Fossil Biomaterials. Compendium and Atlas. Amsterdam: Elsevier Scientific Publ. Co.Google Scholar
  29. MOSCH, W. H. M. & MOOI, J. C. 1975 A chemical method to identify tuber rot in potato caused by Phoma exiqua var. foveata. Netherlands Journal of Plant Pathology 81, 86–88.CrossRefGoogle Scholar
  30. OFFEM, J. O. & DART, R. K. 1983 Rapid determination of spoilage fungi. Journal of Chromatography 260, 109–113.CrossRefGoogle Scholar
  31. RIDE, J. P. & DRYSDALE, R. B. 1972 A rapid method for the chemical estimation of filamentous fungi in plant tissue. Physiological Plant Pathology 26, 7–15.CrossRefGoogle Scholar
  32. ROSSWALL, T. (ed.) 1972 Modern Methods in the Study of Microbial Ecology. Bulletin 17 of the Ecological Research Committee of Naturvetenskapliger Forkningsrod (Swedish National Science Research Council), Stockholm.Google Scholar
  33. RUDALL, K. M. & KENCHINGTON, W. 1973 The chitin system. Biological Reviews 48, 597–636.CrossRefGoogle Scholar
  34. SAMSON, R. A., HOEKSTRA, E. S. & VAN OORSCHOT, C. A. N. 1984 Introduction to Foodborne Fungi. Baarn, the Netherlands: Centraalbureau voor Schimmelcultures.Google Scholar
  35. SEITZ, L. M., SAUER, D. B., BURROUGHS, R., MOHR, H. E. & HUBBARD, J. P. 1979 Ergosterol as a measure of fungal growth. Phytopathology 69, 1202–1203.CrossRefGoogle Scholar
  36. VAN EIJK, G. W. & ROEIJMANS, H. J. 1982 Distribution of carotenoids and sterols in relation to the taxonomy of Taphrina and Protomyces. Antonie van Leeuwenhoek 48, 257–264.CrossRefGoogle Scholar
  37. WALLER, G. R. & DERMER, O. C. (eds.) 1980 Biochemical Applications of Mass Spectrometry. First supplementary volume. New York: John Wiley & Sons.Google Scholar
  38. WEETE, J. D. 1980 Lipid Biochemistry of Fungi and Other Organisms. New York: Plenum Press.Google Scholar
  39. WEIJMAN, A. C. M., ROEIJMANS, H. J., VAN EIJK, G. W. & SAKKERS, P. J. D. 1984a Diagnosis of the potato storage disease gangrene by GC-MS. Palo Alto: Hewlett-Packard Application Note (in press).Google Scholar
  40. WEIJMAN, A. C. M., VAN EIJK, G. W., ROEIJMANS, H. J., WINDIG, W., HAVERKAMP, J. & TURKENSTEEN, L. J. 1984b Mass spectrometric techniques as aids in the diagnosis of gangrene in potatoes caused by Phoma exiqua var. foveata. Netherlands Journal of Plant Pathology 90, 107–115.CrossRefGoogle Scholar
  41. WILKINS, C. L. 1983 Hyphenated techniques for analysis of complex organic mixtures. Science 222, 291–296.CrossRefGoogle Scholar
  42. WU, L-C. & STAHMANN, M. A. 1975 Chromatographic estimation of fungal mass in plant material. Phytopathology 65, 1032–1034.CrossRefGoogle Scholar
  43. ZLATKIS, A., POOLE, C. F., BRAZELL, R., LEE, K. Y., HSU, F. & SINGHAWANGCHA, S. 1981 Profiles of organic volatiles in biological fluids as an aid to the diagnosis of disease. Analyst 106, 352–360.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • M. A. Cousin
  • D. A. A. Mossel
  • J. W. Hastings
  • W. Y. J. Tsai
  • L. B. Bullerman
  • A. P. Williams
  • J. M. Wood
  • A. C. M. Weijman
  • G. W. Van Eijk
  • W. Windig
  • R. A. Samson

There are no affiliations available

Personalised recommendations