Advertisement

Selective Media and Procedures

  • A. D. Hocking
  • J. I. Pitt
  • L. R. Beuchat
  • J. C. Frisvad
  • U. Thrane
  • O. Filtenborg
  • D. Richard-Molard
  • R. B. Ferguson
  • T. Deák
  • V. Tabajdi-Pinter
  • V. Nagel
  • I. Fabri
  • A. D. KingJr.
Part of the NATO ASI Series book series (NSSA, volume 122)

Abstract

In food bacteriology a great deal of effort has been devoted to the development of media selective for particular kinds of spoilage bacteria or pathogens. By comparison, the development of media selective for particular fungi remains in its infancy. Nevertheless, selective media are essential for certain classes of fungi such as xerophiles which will not grow on general purpose media. The detection of preservative-resistant yeasts is greatly simplified by using selective media. Other situations in which selective media are of great value are in the isolation of toxigenic fungi belonging to Aspergillus, Fusarium or Penicillium, for example, and increasing efforts can be expected in this area in years to come. The development of selective media for spoilage fungi, such as specific xerophiles or molds invading cereals before harvest, will also be important in the future.

Keywords

Corn Meal PRYES Medium Direct Plating Yeast Extract Sucrose Green Coffee Bean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASSANTE, G., CAMARDA, L., LOCCI, R., MERLINI, L., NASINI, G. & PAPADOPOULOS, E. 1981 Isolation and structure of red pigments from Aspergillus flavus and related species, grown on differential medium. Journal of Agricultural and Food Chemistry 29, 785–787.CrossRefGoogle Scholar
  2. BOTHAST, R. J. & FENNELL, D. I. 1974 A medium for rapid identification and enumeration of Aspergillus flaws and related organisms. Mycologia 66, 365–369.CrossRefGoogle Scholar
  3. HAMSA, T. A. P. & AYRES, J. C. 1977 A differential medium for the isolation of Aspergillus flavus from cottonseed. Journal of Food Science 42: 449–453.CrossRefGoogle Scholar
  4. HOCKING, A. D. 1982 Aflatoxigenic fungi and their detection. Food Technology in Australia 34, 236–238.Google Scholar
  5. PITT, J. I., HOCKING, A. D. & GLENN, D. R. 1983 An improved medium for the detection of Aspergillus flavus and A. parasiticus. Journal of Applied Bacteriology 54, 109–114.CrossRefGoogle Scholar
  6. BELL, D. K. & CRAWFORD, J. L. 1967 A Botran-amended medium for isolating Aspergillus flaws from peanuts and soil. Phytopathologv 57, 939–941.Google Scholar
  7. BEUCHAT, L. R. 1979 Survival of conidia of Aspergillus flavus in dried foods. Journal of Stored Products Research 15, 25–31.CrossRefGoogle Scholar
  8. BEUCHAT, L. R. 1984 Comparison of Aspergillus differential medium and Aspergillus flavus and A. parasiticus agar forenumerating total yeasts and molds and potentially aflatoxigenic Aspergilli in peanuts, corn meal and cowpeas. Journal of Food Protection 47, 512–519.Google Scholar
  9. BOTHAST, R. J. & FENNELL, D. I. 1974 A medium for rapid identification and enumeration of Aspergillus flavus and related organisms. Mycologia 66, 365–369.CrossRefGoogle Scholar
  10. HAMSA, T. A. P. & AYRES, J. C. 1977 A differential medium for the isolation of Aspergillus flavus from cottonseed. Journal of Food Science 42, 449–453.CrossRefGoogle Scholar
  11. PITT, J. I., HOCKING, A. D. & GLENN, D. R. 1983 An improved medium for the detection of Aspergillus flavus and A. parasiticus. Journal of Applied Bacteriology 54, 109–114.CrossRefGoogle Scholar
  12. CIEGLER, A., FENNELL, D. I., SANSING, G. A., DETROY, R. W. & BENNETT, G. A. 1973 Mycotoxin producing strains of Penicillium viridicatum: classification into subgroups. Applied Microbiology 26, 271–278.Google Scholar
  13. CIEGLER, A., LEE, L. S. & DUNN, J. J. 1981 Production of naphthoquinone mycotoxins and taxonomy of Penicillium viridicatum. Applied and Environmental Microbiology 42, 446–449.Google Scholar
  14. FRISVAD, J. C. 1981 Physiological criteria and mycotoxin production as aids in identification of common asymmetric penicillia. Applied and Environmental Microbiology 41, 568–579.Google Scholar
  15. FRISVAD, J. C. 1983 A selective and indicative medium for groups of Penicillium viridicatum producing different mycotoxins in cereals. Journal of Applied Bacteriology 54, 409–416.CrossRefGoogle Scholar
  16. MISLIVEC, P. B., DIETER, C. T. & BRUCE, V. R. 1975 Mycotoxin-producing potential of mold flora of dried beans. Applied Microbiology 29, 522–526.Google Scholar
  17. PITT, J. I. 1979 The Genus Penicillium and its Teleomorphic States Eupenicillium and Talaromyces. London: Academic Press.Google Scholar
  18. STACK, M. E. & MISLEVIC, P. B. 1978 Production of xanthomegnin and viomellein by isolates of Aspergillus ochraceus, Penicillium cyclopium and Penicillium viridicatum. Applied and Environmental Microbiology 36, 552–554.Google Scholar
  19. FRISVAD, J. C. 1983 A selective and indicative medium for groups of Penicillium viridicatum producing different mycotoxins in cereals Journal of Applied Bacteriology 54, 409–416.Google Scholar
  20. MISLIVEC, P. B. & BRUCE, V. R. 1977 Isolation of toxic and other mold species and genera in soybeans. Journal of Food Protection 40, 309–312.Google Scholar
  21. MISLIVEC, P. B., BRUCE, V. R. & GIBSON, R. 1983 Incidence of toxigenic and other molds in green coffee beans. Journal of Food Protection 46, 969–973.Google Scholar
  22. PITT, J. I., HOCKING, A. D. & GLENN, D. R. 1983 An improved medium for the detection of Aspergillus flavus and A. parasiticus. Journal of Applied Bacteriology 54, 109–114.CrossRefGoogle Scholar
  23. VON ARX, J. A. 1981 The Genera of Fungi Sporulating in Pure Culture 3. ed. Vaduz: J. Cramer Verlag.Google Scholar
  24. CORRY, J. E. L. 1982 Assessment of the selectivity and productivity of media used in analytical mycology. Archiv für Lebensmittelhygiene 33, 160–164.Google Scholar
  25. DOMSCH, K. H., GAMS, W. & ANDERSON, T.-H. 1980 Compendium of Soil Fungi. New York: Academic Press.Google Scholar
  26. FRISVAD, J. C. 1983 A selective and indicative medium for groups of Penicillium viridicatum producing different mycotoxins in cereals. Journal of Applied Bacteriology 54, 409–416.CrossRefGoogle Scholar
  27. FRISVAD, J. C. & FILTENBORG, O. 1983 Classification of terverticillate Penicillia based on profiles of mycotoxins and other secondary metabolites. Applied and Environmental Microbiology 46, 1301–1310.Google Scholar
  28. GYLLANG, H., KJELLEN, K., HAIKARA, A. & SIGSGAARD, P. 1981 Evaluation of fungal contaminations on barley and malt. Journal of the Institute of Brewing 87, 248–251.Google Scholar
  29. HOCKING, A. D. & PITT, J. I. 1980 Dichloran-rose bengal medium for enumeration of xerophilic fungi from low-moisture foods. Applied and Environmental Microbiology 39, 488–492.Google Scholar
  30. NELSON, P. E., TOUSSOUN, T. A. & MARASAS, W. F. O. 1983 “Fusarium Species. An Illustrated Manual for Identification”. University Park: Pennsylvania State University Press.Google Scholar
  31. NIEMELÄ, S. 1983 Statistical Evaluation of Results from Quantitative Microbiological Examinations. Uppsala Sweden: Nordic Committee on Food Analysis. (NMKL Report no. 1, 2. ed.). p. 21.Google Scholar
  32. PITT, J. I. 1979 The Genus Penicillium and Its Teleomorphic States Eupenicillium and Talaromyces. London: Academic Press.Google Scholar
  33. RAPER, K. B. & FENNELL, D. I. 1965 The Genus Aspergillus. Baltimore: Williams and Wilkins.Google Scholar
  34. SAMSON, R. A. 1979 A compilation of the Aspergilli described since 1965. Studies in Mycology (Baarn) 18, 1–40.Google Scholar
  35. SAMSON, R. A., HOEKSTRA, E. S. & VAN OORSHOT, C. A. N. 1984 Introduction to Food-borne Fungi. 2nd. ed. Baarn: Centraalbureau voor Schimmelcultures.Google Scholar
  36. BEUCHAT, L. R. 1983 Influence of water activity on growth, metabolic activities and survival of yeasts and molds. Journal of Food Protection 46, 135–141.Google Scholar
  37. CHRISTIAN, C. M. 1946 The quantitative determination of molds in flour. Cereal Chemistry 23, 322–329.Google Scholar
  38. FRASER, L. 1953 A new genus of the Plectascales. Proceedings of the Linnean Society of New South Wales 78, 241–246.Google Scholar
  39. HARROLD, C. E. 1950 Studies in the genus Eremascus. I. The rediscovery of Eremascus albus Edam and some new observations concerning its life-history and cytology. Annals of Botany 14, 127–148.Google Scholar
  40. HOCKING, A. D. & PITT, J. I. 1980 Dichloran-glycerol medium for enumeration of xerophilic fungi from low-moisture foods. Applied and Environmental Microbiology 39, 488–492.Google Scholar
  41. PITT, J. I. 1975 Xerophilic fungi and the spoilage of foods of plant origin. In Water Relations of Foods. R.B. Duckworth, London: Academic Press. pp. 273–307.Google Scholar
  42. PITT, J. I. & HOCKING, A. D. 1982 Food spoilage fungi. I. Xeromyces bisporus Fraser. CSIRO Food Research Quarterly 42, 1–6.Google Scholar
  43. ICUMSA 1974 Report of the Proceedings of the Sixteenth Session, Ankara. Manchester: John Roberts and Sons.Google Scholar
  44. SCHNEIDER, F. (ed.) 1979 Sugar Analysis. ICUMSA Methods. Peterborough: ICUMSA.Google Scholar
  45. ANON. 1967 Unusual heat resistance mould in apple juice. Food Industries of South Africa 19, 55–56.Google Scholar
  46. BEUCHAT, L. R. & RICE, S. L. 1979 Byssochlamys spp. and their importance in processed fruits. Advances in Food Research 25, 237–288.CrossRefGoogle Scholar
  47. HOCKING, A. D. & PITT, J. I. 1984 Food spoilage fungi. II. Heat resistant fungi. CSIRO Food Research Quarterly 44, 73–82.Google Scholar
  48. HULL, R. 1939 Study of Byssochlamys fulva and control measures in processed fruits. Annals of Applied Biology 26, 800–822.CrossRefGoogle Scholar
  49. KAVANAGH, J., LARCHET, N. & STUART, M. 1963 Occurence of a heat-resistant species of Aspergillus in canned strawberries. Nature, London 198, 1322.CrossRefGoogle Scholar
  50. KING, A. D. Jr., MICHENER, H. D. & ITO, K. A. 1969 Control of Byssochlamys and related heat-resistant fungi in grape products. Applied Microbiology 18, 166–173.Google Scholar
  51. MURDOCK, D. L. & HATCHER, W. S. 1978 A simple method to screen fruit juices and concentrates for heat-resistant mold. Journal of Food Protection 41, 254–256.Google Scholar
  52. OLLIVER, H. & RENDLE, T. 1934 A new problem in fruit preservation. Studies of Byssochlamys fulva and its effect on the tissues of processed fruit. Journal of the Society for Chemical Industry, London 53, 166–172.Google Scholar
  53. PUT, H. M. C. & KRUISWIJK, J. T. 1964 Disintegration and organoleptic deterioration of processed strawberries caused by the mould Byssochlamys nivea. Journal of Applied Bacteriology 27, 53–58.CrossRefGoogle Scholar
  54. SPURGIN, H. M. 1963 Suspected occurrence of Byssochlamys fulva in Queensland-grown canned strawberries. Queenland Journal of Agricultural and Animal Sciences 21, 247–250.Google Scholar
  55. WILLIAMS, C. C., CAMERON, E. J. & WILLIAMS, O. B. 1941 A facultatively anaerobic mold of unusual heat resistance. Food Research 6, 69–73.Google Scholar
  56. BAGGERMAN, W. I. 1984 Heat resistance of yeast cells and fungal spores. In Introduction to food-borne fungi ed. Samson, R. A., Hoekstra, E. S. and Van Oorschot C. A. N. Chapter 5, pp. 227–281. Baarn: Centraalbureau voor Schimmelcultures.Google Scholar
  57. BAYNE, H. G. & MICHENER, H. D. 1979 Heat resistance of Byssochlamys ascospores. Applied and Environmental Microbiology 37, 449–453.Google Scholar
  58. BEUCHAT, L. R. 1976 Effectiveness of various food preservatives in controlling the outgrowth of Byssochlamys nivea ascospores. Mycopathologia 59, 175–178.CrossRefGoogle Scholar
  59. KING, A. D. Jr., BAYNE, H. G. & ALDERTON, G. 1979 Nonlogarithmic death rate calculations for Byssochlamys fulva and other microorganisms. Applied and Environmental Microbiology 37, 596–600.Google Scholar
  60. KING, A. D. Jr., MICHENER, H. D. & ITO, K. A. 1969 Control of Byssochlamys and related heat-resistant fungi in grape products. Applied Microbiology 18, 166–173.Google Scholar
  61. MICHENER, H. D. & KING, A. D. Jr. 1974 Preparation of free heat-resistant ascospores from Byssochlamys asci. Applied Microbiology 27, 671–678.Google Scholar
  62. MURDOCK, D. I. & HATCHER, W. S. Jr. 1978 A simple method to screen fruit juices and concentrates for heat-resistant mold. Journal of Food Protection 41, 254–256.Google Scholar
  63. PUT, H.H.C. 1964 A selective method for cultivating heat resistant moulds, particularly those of the genus Byssochlamys, and their presence in Dutch soil. Journal of Applied Bacteriology 27, 59–64.CrossRefGoogle Scholar
  64. SPLITTSTOESSER, D. F., EINSET, A., WILKISON, M. & PREZIOSE, J. 1974 Effect of food ingredients on the heat resistance of Byssochlamys fulva ascospores. Proceedings IV International Congress Food Science and Technology 3, 79–85 Madrid.Google Scholar
  65. SPLITTSTOESSER, D. F. & KING A. D. Jr. 1984 Enumeration of Byssochlamys and other heat resistant molds. In Compendium of Methods for the Microbiological Examination of Foods. ed. Vanderzant, C. and Gilliland, S. L. Ch. 17, Washington, D.C.: American Public Health Association.Google Scholar
  66. SPLITTSTOESSER, D. F., KUSS F. R. & HARRISON, W. 1970 Enumeration of Byssochlamys and other heat-resistant molds. Applied Microbiology 20, 393–397.Google Scholar
  67. YATES, A. R. 1974 The occurrence of Byssochlamys sp. molds in Ontario. Canadian Institute of Food Science and Technology 7, 148–150.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • A. D. Hocking
  • J. I. Pitt
  • L. R. Beuchat
  • J. C. Frisvad
  • U. Thrane
  • O. Filtenborg
  • D. Richard-Molard
  • R. B. Ferguson
  • T. Deák
  • V. Tabajdi-Pinter
  • V. Nagel
  • I. Fabri
  • A. D. KingJr.

There are no affiliations available

Personalised recommendations