Application of Results

  • R. E. Johnson


In this concluding chapter the concepts developed for describing cross sections and rate constants are applied to a few of the problem areas discussed in Chapter 1. This discussion, being consistent with the rest of the text, is not intended to be a state-of-the art presentation on each topic and the ideas presented are, for the most part, well established. Further, the cross-section models used are quite simple. In the previous chapters the relationship between the simple and more accurate models for cross sections have been considered. Therefore, the reader should have a feel for the kinds of errors introduced by the choice of cross-section model and is encouraged to include improved estimates. Care should be taken that the increased complexity caused by using a more accurate approximation for cross section is warranted by the correctness of the description of the physical problem. In the following no statement is implied about this. I have only chosen models which lend themselves to either analytic solutions for the problem or to simplifying the presentation. This merely follows the lead of a number of authors who have made wide use of simple cross-sectional forms in discussing, for example, complex radiation transport problems. In many other cases I have simply taken results for certain rate constants generally used in the literature without further discussion, particularly for processes considered in Chapter 5.


Solar Wind Incident Particle Martian Atmosphere Dissociative Recombination Collision Cascade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Reading

Radiation Transport: Ranges and Energy Deposition

  1. A. Dalgarno in Atomic and Molecular Processes, ed. D. R. Bates, Academic Press, New York (1962), Chapter 15.Google Scholar
  2. J. Lindhard, M. Scharff, and H. E. Schiott, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 33, No. 14, 1 (1963).Google Scholar
  3. K. B. Winterbon, Ion Implantation Range and Energy Deposition Distributions, Vol. 2, Low Incident Ion Energies, Plenum Press, New York (1975).Google Scholar
  4. P. Sigmund, Rev. Roum. Phys. 17, No. 7, 823 (1972).Google Scholar
  5. P. Sigmund, K. Dan. Vidensk. Selsk Mat. Fys. Medd., 40, No. 5, 1 (1978).Google Scholar
  6. D. W. Palmer, M. W. Thompson, and P. D. Townsend, eds., Atomic Collision Phenomena in Solids, American Elsevier, New York (1970).Google Scholar
  7. M. T. Robinson and I. M. Torrens, Phys. Rev. B, 9 5008 (1974).ADSCrossRefGoogle Scholar
  8. P. D. Townsend, J. C. Kelly, and N. E. W. Hartley, Ion Implantation, Sputtering and their Applications, Academic Press, New York (1976).Google Scholar
  9. J. Jackson, J. Robinson, and D. Thompson, eds. Atomic Collisions in Solids, North-Holland, Amsterdam (1980).Google Scholar

Biological Damage

  1. R. D. Cooper and R. W. Woon, eds., Physical Mechanisms in Radiation Biology, Technical Information Office, USAEC, Oak Ridge, Tennessee (1974).Google Scholar
  2. H. Dertinger and H. Jung, Molecular Radiation Biology, Springer-Verlag, New York (1970).CrossRefGoogle Scholar
  3. R. A. Roth and R. Katz, Radiat. Res. 83, 499 (1980).CrossRefGoogle Scholar

Beam-Foil Transmission Experiments

  1. I. A. Sellin and D. J. Pegg, eds. Beam Foil Spectroscopy, Plenum, New York (1975).Google Scholar
  2. H. G. Berry, R. Deserio, and A. E. Livingston, Phys. Rev. Lett., 41 1652 (1978).ADSCrossRefGoogle Scholar
  3. D. S. Gemmel, Chem. Rev., 80 301 (1980).ADSCrossRefGoogle Scholar
  4. J. Remillieux, Nucl. Inst. and Meth., 170 31 (1980).ADSCrossRefGoogle Scholar
  5. R. Levi-Setti, K. Lam, and T. R. Fox, Nucl. Inst. and Meth., 194, 281 (1982)ADSCrossRefGoogle Scholar

Sputtering and Thermal Spikes

  1. D. W. Palmer, M. W. Thompson, and P. D. Townsend, eds. Atomic Collision Phenomena in Solids, American Elsevier, New York (1970), Session V.Google Scholar
  2. P. Sigmund, Phys. Rev. 184, 383 (1969).ADSCrossRefGoogle Scholar
  3. P. Sigmund, in Proc. Symp. on Sputtering, Vienna, April 1980, ed. P. Varga et al, (in press).Google Scholar
  4. R. D. Macfarlane and F. Torgenson, Science, 191 920 (1976).ADSCrossRefGoogle Scholar
  5. D. A. Thompson, R. S. Walker and J. A. Davies, Rad. Eff, 32 135 (1977).CrossRefGoogle Scholar
  6. R. Kelley, Radiat. Eff, 32, 91 (1977).CrossRefGoogle Scholar
  7. R. Behrisch, Sputtering by Particle Bombardment, in Topics in Applied Physics, Vol, 47, Springer-Verlag (1981).Google Scholar
  8. C. C. Watson and P. K. Haff, J. Appl. Phys., 51 691 (1980).ADSCrossRefGoogle Scholar
  9. J. B. Sanders, Rad. Eff., 51 43 (1980).CrossRefGoogle Scholar
  10. R. E. Johnson and R. Evatt, Rad. Eff, 52 187 (1980).CrossRefGoogle Scholar
  11. M. Szymonski, Rad. Eff., 52 9 (1980).CrossRefGoogle Scholar
  12. P. Sigmund and C. Claussen, J. Appl. Phys. 52, 990 (1981).ADSCrossRefGoogle Scholar

Atmospheres and Escape

  1. P. M. Banks and G. Kockarts, Aeronomy, Parts A and B, Academic Press, New York (1973).Google Scholar
  2. J. W. Chamberlain, Theory of Planetary Atmospheres, Academic Press, New York (1978).Google Scholar
  3. A. E. S. Green and P. J. Wyatt, Atomic and Space Physics, Addison-Wesley, Reading, Massachusetts (1965).Google Scholar
  4. J. C. G. Walker, in Atomic Processes and Applications, ed. G. Burke and B. L. Moiseiwitsch, North-Holland, Amsterdam (1976), Chapter 3.Google Scholar
  5. P. K. Haff and C. C. Watson, J. Geophys. Res. 84, 8436 (1979).ADSCrossRefGoogle Scholar
  6. J. Fox and A. Dalgarno, J. Geophys. Res., 84 7315 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • R. E. Johnson
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations