Advertisement

Interaction Potentials and Transition Probabilities

  • R. E. Johnson

Abstract

Calculation of the angular differential cross section (for comparison with experiment or for use when experimental data are not available) requires a description of the interaction between the two colliding particles. This endeavor has kept physicists and chemists busy since the beginning of the century, the description being complicated by the fact that there are three different effects involved and, generally, many particles.

Keywords

Wave Function Charge Distribution Impact Parameter Differential Cross Section Inelastic Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Reading

Intermolecular Potentials

  1. J. O. Hirschfelder, ed., Advances in Chemical Physics,Vol. 12, Wiley, New York (1967), Chapters 1–4.Google Scholar
  2. J. O. Hirschfelder, F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York ( 1964k Chapter 2.Google Scholar
  3. I. M. Torrens, Interatomic Potentials,Academic Press, New York (1972), Chapters 1, 3, and 4.Google Scholar
  4. J. Goodisman, Diatomic Interaction Potential Theory,Vol. 1, Academic Press, New York (1973), Chapters 1 and 2.Google Scholar

Exchange Energy

  1. O. Firsov, Zh. Eksp. Teor. Fiz. 21, 1001 (1951), and texts above.Google Scholar
  2. W. Heitler and Z. London, Z. Physik 45, 455 (1927).ADSCrossRefGoogle Scholar

Molecular Orbitals and Correlation Diagrams

  1. W. Kauzman, Quantum Chemistry, Academic Press, New York (1960), Part III.Google Scholar
  2. G. Herzberg, Spectra of Diatomic Molecules, Van Nostrand-Reinhold, Princeton (1950), Chapter 6.Google Scholar
  3. W. Litchen, Phys. Rev. 164, 131 (1967)ADSCrossRefGoogle Scholar
  4. U. Fano and W. Litchen, Phys. Rev. Lett. 14, 627 (1965).ADSCrossRefGoogle Scholar
  5. Q. C. Kessel, E. Pollack, and W. W. Smith, in Collision Spectroscopy, ed. R. G. Cooks, Plenum Press (1978), Chapter 3.Google Scholar

Time-Dependent Perturbation Theory and Impact-Parameter Transition Probabilities

  1. D. R. Bates, in Quantum Theory, I. Elements, ed. D. R. Bates, Academic Press, New York (1961), Chapter 8.Google Scholar
  2. E. G. G. Stueckleberg, Helv. Phys. Acta, 5, 369 (1932)Google Scholar
  3. L. Landau, Phys. Z. USSR 2, 46 (1932)MATHGoogle Scholar
  4. C. Zener, Proc. Roy. Soc. (London) 137, 696 (1932).ADSCrossRefGoogle Scholar
  5. N. Rosen and C. Zener, Phys. Rev. 40, 502 (1932)ADSMATHCrossRefGoogle Scholar
  6. D. R. Bates, Discuss. Faraday Soc. 33, 7 (1962).Google Scholar
  7. Yu. Demkov, Soy. Phys. JET P, 18 138 (1964)Google Scholar
  8. R. E. Olson, Phys. Rev. A 6, 1822 (1972).Google Scholar
  9. M. R. C. Mcdowell and J. P. Coleman, Introduction to the Theory of lon—Atom Collisions,North-Holland, Amsterdam (1970), Chapters 4 and 8.Google Scholar
  10. M. S. Child, Molecular Collision Theory, Academic Press, New York (1974), Chapter 8.Google Scholar
  11. B. H. Bransden, Atomic Collision Theory,W. A. Benjamin, New York (1970), Chapters 8 and 9.Google Scholar

Born Approximation: Transitions

  1. D. R. Bates, in Atomic and Molecular Processes, ed. D. R. Bates, Academic Press, New York, p. 549 (1962).Google Scholar
  2. H. A. Bethe and R. Jackiw, Intermediate Quantum Mechanics, 2nd edn., W. A. Benjamin, New York (1968), Part I I.Google Scholar
  3. N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, 3rd edn., Oxford University Press, London (1965), Chapter 5.Google Scholar

Semiclassical, Inelastic Differential Cross Sections

  1. F. T. Smith, in Physics of the One-and Two-Electron Atoms,eds. F. Bopp and H. Kleinpop-pen, North-Holland, Amsterdam (1969), p. 755. (F. T. Smith, D. C. Lorents, R. E. Olson, and co-workers have published a series of papers on semiclassical methods for differential cross sections in Physical Review from 1967 to the present.)Google Scholar
  2. J. B. Delos and W. R. Thornson, Phys. Rev. A, 6 720, 728 (1972).Google Scholar
  3. T. A. Green and M. E. Riley, Phys. Rev. A, 8 2938 (1973).ADSCrossRefGoogle Scholar
  4. T. A. Green, Phys. Rev. A, 23 532 (1981).Google Scholar
  5. E. E. Nikitin, in Advances in Quantum Chemistry, Vol. 5, ed. P. Löwden, Academic Press, New York (1970), Chapter 4.Google Scholar
  6. R. N. Porter and L. M. Raff, in Dynamics of Molecular Collisions, Vol. 2, ed. W. H. Miller, Plenum Press, New York (1976), Chapter 2.Google Scholar
  7. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, trans. J. B. Sykes and J. S. Bell, 3rd. edn., Pergamon Press, New York, (1977), Chapters VII and XVIII.Google Scholar
  8. M. S. Child in Advances in Atomic and Molecular Physics, Vol. 14,ed. D. R. Bates, p. 225.Google Scholar

Charge Exchange

  1. R. A. Mapleton, Theory of Charge Exchange, Wiley New York (1972).Google Scholar
  2. D. R. Bates, Proc. Roy. Soc. (London), A247 294 (1958).Google Scholar
  3. D. R. Bates and R. Mccarroll, Proc. Roy. Soc. (London), A245 175 (1958).Google Scholar
  4. D. R. Bates and R. Mccarroll, Phil. Mag. Supp., 11 39 (1962)Google Scholar
  5. T. A. Green and R. E. Johnson, Phys. Rev., 152 9 (1966).ADSCrossRefGoogle Scholar
  6. R. E. Olsen and A. Salop, Phys. Rev. A, 16 531 (1977).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • R. E. Johnson
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations