Cross Sections and Rate Constants

  • R. E. Johnson

Abstract

In order to describe in a quantitative way the phenomena discussed in the previous chapter, we need to be able to calculate or measure the required cross sections or rate constants. To begin the discussion, we divide collisions into two classes: elastic collisions (scattering) during which the particles interact (collide) with each other but only their directions of motion and speeds change, and inelastic collisions in which both the motion and the internal energies of the particles are changed. In Table 2.1 are given examples of inelastic collisions which we will consider in this text. Although inelastic collisions are clearly more interesting, we start by discussing experiments which only determine whether or not a particle was deflected.

Keywords

Benzene Torque Attenuation Argon Uranium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Reading

General

  1. H. W. Massey, Atomic and Molecular Collisions, Halsted Press, New York (1979), Chapter 1.Google Scholar
  2. M. R. C. Mcdowell and J. P. Coleman, Introduction to the Theory of Ion—Atom Collisions, North-Holland, Amsterdam (1970), Chapter 1.Google Scholar
  3. E. W. Mcdaniel, Collision Phenomena in Ionized Gases, Wiley, New York (1964), Chapters 1 and 4.Google Scholar
  4. J. B. Hasted, Physics of Atomic Collisions, 2nd edn., American Elsevier, New York (1972), Chapters 2–4.Google Scholar
  5. J. T. Yardley, Introduction to Molecular Energy Transfer, Academic Press, New York (1980).Google Scholar
  6. H. Goldstein, Classical Mechanics, Addison-Wesley, Cambridge, Massachusetts (1959), Chapter 3.Google Scholar
  7. M. S. Child, Molecular Collision Theory,Academic Press, New York (1974), Chapters 1 and 2.Google Scholar

Effects of Neighboring Atoms in Molecules or Solids

  1. P. Sigmund, Phys. Rev. A, 14, 996 (1976).ADSCrossRefGoogle Scholar
  2. P. Sigmund, K. Dan. Vidensk. Selsk. Mat. Fys. Medd., 39 (11) 1 (1977).Google Scholar
  3. F. Besenbacher, J. Heinemeier, P. Hvelplund, and H. Knudsen, Phys. Rev. A, 18, 2470 (1978).ADSCrossRefGoogle Scholar

Classical Deflection Function Expressions

  1. J. Lindhard, V. Nielsen, and M. Scharff, K. Dan. Vidensk. Selsk. Mat. Fys. Medd., 36 (10) (1968).Google Scholar
  2. F. T. Smith, R. P. Marchi, and K. G. Dedrick, Phys. Rev. 150, 79 (1966).ADSCrossRefGoogle Scholar

Classical Stopping Power Calculation

  1. J. D. Jackson, Classical Electrodynamics, 2nd edn. Wiley, New York (1975), Chapter 13.MATHGoogle Scholar
  2. N. Bohr, K. Dan. Vidensk. Mat. Fys. Medd., 18 (18) (1948).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • R. E. Johnson
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations