Tumor Suppressor Genes

  • Tracey L. Plank
  • Elizabeth Petri Henske


Tumor suppressor genes (TSGs) are genes whose protein products function in the control of cellular proliferation. In contrast to oncogenes, which are activated in cancer, TSGs are functionally inactivated in cancer. In general, TSGs are characterized by loss-offunction mutations in human tumors. These loss-of-fuunction mutations can be missense mutations that alter critical amino acid residues, mutations that cause premature protein truncation resulting in the loss of functional domains or unstable products, or deletion of the entire gene. Loss-of-function mutations are often accompanied by loss of heterozygosity (LOH) at the TSG locus; LOH can be detected by comparing the pattern of a polymorphic DNA marker in tumor versus normal DNA (see Chapter 1).


Tumor Suppressor Gene Mismatch Repair Clear Cell Renal Carcinoma Mismatch Repair Gene Single Base Mismatch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Knudson A: Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971, 68: 820–823.PubMedCrossRefGoogle Scholar
  2. 2.
    Clurman B, Groudine M: Defining tumour-suppressor genes. Nature 1997, 389: 123.CrossRefGoogle Scholar
  3. 3.
    Haber D, Harlow E: Tumour-suppressor genes: evolving definitions in the genomic age. Nat Genet 1997, 16: 320–322.PubMedCrossRefGoogle Scholar
  4. 4.
    Knudson A: Antioncogenes and human cancer. Proc Natl Acad Sci USA 1993, 90: 10914–10921.PubMedCrossRefGoogle Scholar
  5. 5.
    Neumann H, Lips C, Hsia Y, Thar B: Von HippelLindau syndrome. Brain Patho11995, 5: 181–193.Google Scholar
  6. 6.
    Prowse A, Webster A, Richards F,: Somatic inactivation of the VHL gene in von Hippel-Lindau disease tumors. Am J Hum Genet 1997, 60: 765–771.PubMedGoogle Scholar
  7. 7.
    Foster K, Prowse A, van den Berg A,: Somatic mutations of the von Hippel-Lindau disease TSG in non-familial clear cell renal carcinoma. Hum Mol Genet 1994, 3: 2169–2173.PubMedCrossRefGoogle Scholar
  8. 8.
    Fearon E, Vogelstein B: A genetic model for colorectal tumorigenesis. Cell 1990, 61: 759–767.PubMedCrossRefGoogle Scholar
  9. 9.
    Kinzler K, Vogelstein B: Gatekeepers and caretakers. Nature 1997, 386: 761–763.PubMedCrossRefGoogle Scholar
  10. 10.
    Moslein G, Tester D, Lindor N,: Microsatellite instability and mutation analysis of hMSH2 and HMLH1 in patients with sporadic, familial and hereditary colorectal cancer. Hum Mol Genet 1996, 5: 1245–1252.PubMedCrossRefGoogle Scholar
  11. 11.
    Neumann H, Bender B: Genotype-phenotype correlations in von Hippel-Lindau disease. J Intern Med 1998, 243: 541–545.PubMedCrossRefGoogle Scholar
  12. 12.
    Spirio L, Olschwant S, Groden J,: Alleles of the APC gene: an attenuated form of familial polyposis. Cell 1993, 75: 951–957.PubMedCrossRefGoogle Scholar
  13. 13.
    Gutmann D, Geist R, Xu H,: Defects in neurofibromatosis 2 protein function can arise at multiple levels. Hum Mol Genet 1998, 7: 335–345.PubMedCrossRefGoogle Scholar
  14. 14.
    Lin S-C, Skapek S, Lee E-H: Genes in the RB pathway and their knockout in mice. Semin Cancer Biol 1996, 7: 279–289.PubMedCrossRefGoogle Scholar
  15. 15.
    Jacks T, Weinberg R: The expanding role of cell cycle regulators. Science 1998, 280: 1035.PubMedCrossRefGoogle Scholar
  16. 16.
    Hesketh R: The Oncogene and Tumor Suppressor Gene Facts Book. San Diego, CA: Academic Press; 1997.Google Scholar
  17. 17.
    Chin L, Pomerantz J, DePinho R: The INK4a/ARF tumor suppressor: one gene, two products, two pathways. TIBS 1998, 23: 291.PubMedGoogle Scholar
  18. 18.
    Helin K, Peters G: Tumor suppressors: from genes to function and possible therapies. Trends Genet 1998, 14: 8–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Reynisdottir I, Polyak K, Iavarone A, Masague J: Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-5. Genes Dey 1995, 9: 1931–1945.Google Scholar
  20. 20.
    Kolodner R: Mismatch repair: mechanisms and relationship to cancer susceptibility. TIBS 1995, 20: 397.PubMedGoogle Scholar
  21. 21.
    Kolodner R: Biochemistry and genetics of eukaryotic mismatch repair. Genes Dey 1996, 10: 1433–1442.CrossRefGoogle Scholar
  22. 22.
    Prolla T, Abruin A, Bradley A: DNA mismatch repair deficient mice in cancer research. Semin Cancer Biol 1996, 7: 241–247.PubMedCrossRefGoogle Scholar
  23. 23.
    Karran P: Appropriate partners make good matches. Science 1995, 268: 1857.PubMedCrossRefGoogle Scholar
  24. 24.
    Kunkel T, Resnick M, Gordenin D: Mutators specificity and disease: looking over the FENce. Cell 1997, 88: 155–158.PubMedCrossRefGoogle Scholar
  25. 25.
    Marsischky G, Filosi M, Kane M, Kolodner R: Redundancy of saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dey 1996, 10: 407–429.CrossRefGoogle Scholar

Copyright information

© Current Medicine, Inc. 2000

Authors and Affiliations

  • Tracey L. Plank
  • Elizabeth Petri Henske

There are no affiliations available

Personalised recommendations