Pathogenesis and Toxins

  • Thomas Butler
Part of the Current Topics in Infectious Disease book series (CTID)


The pathogenesis of plague has been extensively studied during the past three decades by many dedicated workers at Wilts in England, at Fort Detrick in Maryland, at Walter Reed Army Institute in Washington, D.C., at Albert Einstein University in Philadelphia, and at G.W. Hooper Foundation in San Francisco. By a variety of approaches they sought the mechanisms of disease production by Yersinia pestis. They defined certain crucial chemical properties of the plague bacillus that are responsible for its deadly virulence for man and animals. Two general approaches to the problem of virulence were taken by these workers: (1) To identify avirulent mutants of Y. pestis and to characterize the defect or missing elements that caused the mutants to have diminished virulence, and (2) to fractionate virulent organisms and to examine culture filtrates for the presence of toxic substances that could mimic the toxicity of whole organisms during natural infections. Recent reviews by Brubaker,(1,2) Walker,(3) and Montie and colleagues(4–6) have discussed some of the important results of these investigations in more detail than I shall in the following sections.


Mesenteric Lymph Node Virulence Determinant Yersinia Enterocolitica Yersinia Pestis Yersinia Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. R. Brubaker, Expression of virulence in yersiniae, in Microbiology-1979 ( D. Schlessinger, ed.), American Society for Microbiology, Washington (1979).Google Scholar
  2. 2.
    R. R. Brukaer, The genus Yersinia: Biochemistry and genetics of virulence, Curr. Top. Microbiol. Immunol. 57: 111–158 (1972).CrossRefGoogle Scholar
  3. 3.
    R. V. Walker, Plague toxins: A critical review, Curr. Top. Microbiol. Immunol. 41: 23–60 (1967).PubMedCrossRefGoogle Scholar
  4. 4.
    T. C. Montie and S. J. Ajl, Nature and synthesis of murine toxins of Pasteurella pestis, in Microbial Toxins, Volume 3 ( T. C. Montie, S. Kadis, and S. J. Ajl, eds.), Academic Press, New York, (1970).Google Scholar
  5. 5.
    T. C. Montie, D. B. Montie, and D. Wennerstrom, Aspects of structure and biological activity of plague murine toxin, in Microbiology-197S ( D. Schlessinger, ed.), American Society for Microbiology, Washington (1975).Google Scholar
  6. 6.
    T. C. Montie, Properties and pharmacological action of plague murine toxin, Pharmacol. Ther. 12: 491–499 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    R. Glosnicka and E. Gruszkiewicz, Chemical composition and biological activity of the Yersinia pestis envelope substance, Infect. Immun. 30: 506–512 (1980).PubMedGoogle Scholar
  8. 8.
    R. C. Williams, H. Gewurz, P. G. Quie, Effects of fraction I from Yersinia pestis on phagocytosis in vitro, J. Infect. Dis. 126: 235–241 (1972).PubMedCrossRefGoogle Scholar
  9. 9.
    J. E. Williams, D. N. Harrison, and D. C. Cavanaugh, Cryptic infection of rats with nonencapsulated variants of Yersinia pestis, Trans. R. Soc. Trop. Med. Hyg. 69: 171–172 (1975).PubMedCrossRefGoogle Scholar
  10. 10.
    J. E. Williams, D. N. Harrison, T. J. Quan, J. L. Mullins, A. M. Barnes, and D. C. Cavanaugh, Atypical plague bacilli isolated from rodents, fleas, and man, Am. J. Public Health 58: 262–264 (1978).CrossRefGoogle Scholar
  11. 11.
    W. A. Janssen and M. J. Surgalla, Plague bacillus: Survival within host phagocytes, Science 163: 950–952 (1969).PubMedCrossRefGoogle Scholar
  12. 12.
    D. C. Cavanaugh and R. Randall, The role of multiplication of Pasteurella pestis in mononuclear phagocytes in the pathogenesis of flea-borne plague, J. Immunol. 83: 348–363 (1959).PubMedGoogle Scholar
  13. 13.
    T. W. Burrows and G. A. Bacon, The basis of virulence in Pasteurella pestis: An antigen determining virulence, Brit. J. Exp. Pathol. 37: 481–493 (1956).Google Scholar
  14. 14.
    W. D. Lawton, R. L. Erdman, and M. J. Surgalla, Bisynthesis and purification of V and W antigen in Pasteurella pestis, J. Immunol. 91: 179–184 (1963).PubMedGoogle Scholar
  15. 15.
    S. C. Straley and R. R. Brubaker, Localization in Yersinia pestis of peptides associated with virulence, Infect. Immun. 36: 129–135 (1982).PubMedGoogle Scholar
  16. 16.
    R. J. Zahorchak, W. T. Charnetzky, R. V. Little, and R. R. Brubaker, Consequences of Cat+ deficiency on macromolecular synthesis and adenylate energy charge in Yersinia pestis, J. Bacteriol. 139: 792–799 (1979).PubMedGoogle Scholar
  17. 17.
    P. J. Hall and R. R. Brubaker, Pesticin-dependent generation of osmotically stable spheroplast-like structures, J. Bacteriol. 136: 786–789 (1978).PubMedGoogle Scholar
  18. 18.
    D. M. Ferber and R. R. Brubaker, Mode of action of pesticin: N-acetylglucosaminidase activity, J. Bacteriol. 139: 495–501 (1979).PubMedGoogle Scholar
  19. 19.
    R. R. Brubaker, E. D. Beesley, and M. J. Surgalla, Pasteurella pestis: Role of pesticin I and iron in experimental plague, Science 149: 422–424 (1965).PubMedCrossRefGoogle Scholar
  20. 20.
    E. D. Beesley, R. R. Brubaker, W. A. Janssen, and M. J. Surgalla, Pesticins III. Expression of coagulase and mechanism of fibrinolysis, J. Bacteriol. 94: 19–26 (1967).PubMedGoogle Scholar
  21. 20a.
    A. Wake, H. Morita, and M. Yamamoto, The effect of an iron drug on host response to experimental plague infection, Jpn. J. Med. Sci. Biol. 25: 75–84 (1972).PubMedGoogle Scholar
  22. 21.
    C. D. Rail, Roles of metallic ions within an area endemic for the plague bacillus (Yersinia pestis), Med. Hypothesis 6: 105–112 (1980).CrossRefGoogle Scholar
  23. 22.
    D. A. L. Davies, A specific polysaccharide of Pasteurella pestis, Biochem. J. 63: 105–116 (1956).PubMedGoogle Scholar
  24. 23.
    A. B. Foster, D. A. L. Davies, and M. J. Crumpton, Action of periodate on some polysaccharides containing aldoheptose sugars, Nature 181: 412–413 (1958).PubMedCrossRefGoogle Scholar
  25. 24.
    D. C. Ellwood, The 3-deoxy-D-manno-octulosonic acid found in the lipopolysaccharide: Pasteurella species, Biochem. J. 106: 47p - 48p (1968).Google Scholar
  26. 25.
    R. V. Walker, M. G. Barnes, and E. D. Higgins, Composition of and pathophysiology produced by plague endotoxins, Nature 209: 1246 (1966).PubMedCrossRefGoogle Scholar
  27. 26.
    J. L. Hartley, G. A. Adams, and T. G. Tornabene, Chemical and physical properties of lipopolysaccharide of Yersinia pestis, J. Bacteriol. 118: 848–854 (1974).PubMedGoogle Scholar
  28. 27.
    E. C. Cocking, J. Keppie, K. Witt, and H. Smith, The chemical basis of the virulence of Pasteurella pestis II. The toxicity for guinea pigs and mice of products of Pasturella pestis, Br. J. Exp. Pathol. 41: 460–471 (1960).PubMedGoogle Scholar
  29. 28.
    R. V. Walker, Comparative physiopathology of plague endotoxin in mice, guinea pigs, and monkeys, J. Infect. Dis. 118: 188–196 (1968).PubMedCrossRefGoogle Scholar
  30. 29.
    J. M. Albizo and M. J. Surgalla, Isolation and biological characterization of Pasteurella pestis endotoxin, Infect. Immun. 2: 229–236 (1970).PubMedGoogle Scholar
  31. 30.
    T. Butler and G. Moller, Mitogenic response of mouse spleen cells and gelation of limulus lysate by lipopolysaccharide of Yersinia pestis and evidence for neutralization of the lipopolysaccharide by polymyxin B, Infect. Immun. 18: 400–404 (1977).PubMedGoogle Scholar
  32. 31.
    R. I. Walker, Detection of an endotoxin-like substance during human plague bacteremia, Southeast Asian J. Trop. Med. Public Health 3: 221–224 (1972).PubMedGoogle Scholar
  33. 32.
    T. Butler, J. Levin, D. Q. Cu, and R. I. Walker, Bubonic plague: Detection of endotoxemia with the limulus test, Ann. Intern. Med. 79: 642–646 (1973).PubMedGoogle Scholar
  34. 33.
    M. J. Finegold, Pathogenesis of plague: A review of plague deaths in the United States during the last decade, Am. J. Med. 45: 549–554 (1968).PubMedCrossRefGoogle Scholar
  35. 34.
    J. J. Nordlund, R. K. Root, and S. M. Wolff, Studies on the origin of human leukocytic pyrogen, J. Exp. Med. 131: 727–743 (1970).PubMedCrossRefGoogle Scholar
  36. 35.
    H. Prydz and A. C. Allison, Tissue thromboplastin activity of isolated human monocytes, Thrombosis Haemostasis 39: 582–584 (1978).Google Scholar
  37. 36.
    R. P. A. Rivers, W. E. Hathaway, and W. L. Weston, The endotoxin-induced coagulant activity of human monocytes, Br. J. Haematol. 30: 311–316 (1975).PubMedCrossRefGoogle Scholar
  38. 37.
    E. Bohn and G. Muller-Berghaus, The effect of leukocyte and platelet transfusion on the activation of intravascular coagulation by endotoxin in granulocytopenic and thrombocytopenic rabbits, Am J. Pathol. 84: 239–258 (1976).PubMedGoogle Scholar
  39. 38.
    L. H. Koplik, Experimental production of hemorrhage and vascular lesions in lymph nodes: An extension of the Shwartzman phenomenon, J. Exp. Med. 65: 287–302 (1937).PubMedCrossRefGoogle Scholar
  40. 39.
    S. Kadis, T. C. Montie, and S. J. Ajl, The murine toxin of Pasteurella pestis: A study in development, Bacteriol. Rev. 30: 177–191 (1960).Google Scholar
  41. 40.
    T. C. Montie and D. B. Montie, Protein toxins of Pasteurella pestis: Subunit composition and acid binding, Biochemistry 70: 2094–2100 (1971).CrossRefGoogle Scholar
  42. 41.
    T. C. Montie and D. B. Montie, Selective detoxification of murine toxin from Yersinia pestis: Reaction of heavy metals with essential sulfhydryl and tryptophan residues, Biochemistry 12: 4958–4965 (1973).PubMedCrossRefGoogle Scholar
  43. 42.
    J. H. Rust, D. C. Cavanaugh, S. Kadis, and S. Ajl, Plague toxin: Its effect in vitro and in vivo, Science 142: 408–409 (1963).PubMedCrossRefGoogle Scholar
  44. 43.
    G. J. Hildebrand, J. Ng, E. K. von Metz, and D. M. Eisler, Studies on the mechanism of circulatory failure induced in rats by Pasteurella pestis murine toxin, J. Infect. Dis. 116: 615–629 (1966).PubMedCrossRefGoogle Scholar
  45. 44.
    S. D. Brown and T. C. Montie, Beta-adrenergic blocking activity of Yersinia pestis murine toxin, Infect. Immun. 18: 85–93 (1977).PubMedGoogle Scholar
  46. 45.
    C. E. Davis and K. Arnold, Role of meningococcal endotoxin in meningococcal purpura, J. Exp. Med. 140: 159–171 (1974).PubMedCrossRefGoogle Scholar
  47. 46.
    D. M. Ferber and R. R. Brubaker, Plasmids in Yersinia pestis, Infect. Immun. 31: 839–841 (1981).PubMedGoogle Scholar
  48. 47.
    M. J. Finegold, J. J. Petery, R. F. Berendt, and H. R. Adams, Studies on the pathogenesis of plague, Am. J. Pathol. 53: 99–111 (1968).PubMedGoogle Scholar
  49. 48.
    M. J. Finegold, Pneumonic plague in monkeys: An electron microscopic study, Am. J. Pathol. 54: 167–178 (1969).PubMedGoogle Scholar
  50. 48a.
    T. Butler, Y. S. Fu, L. Furman, C. Almeida, and A. Almeida, Experimental Yersinia pestis infeciton in rodents after intragastric inoculation and ingestion of bacteria, Infect. Immun. 36: 1160–1167 (1982).PubMedGoogle Scholar
  51. 48b.
    P. B. Carter, L. Lafleur, and S. Toma (eds.), Proceedings of the Third International Symposium on Yersinia Infections, Contrib. Microbiol. Immunol. 5 (1979).Google Scholar
  52. 49.
    H. H. Mollaret and J. C. Guillon, Contribution à l’étude d’un nouveau groupe de germes (Yersinia enterocolitica) proches du bacille de Malassez et Vignal II. Pouvoir pathogène experimental, Ann. Inst. Pasteur Paris 109: 608–613 (1965).PubMedGoogle Scholar
  53. 50.
    B. Nilehn, The relationship of incubation temperature to serum bactericidal effect, pathogenicity, and in vivo survival of Yersinia enterocolitica, Contrib. Microbiol. Immunol. 2: 85–92 (1973).Google Scholar
  54. 51.
    T. J. Quan, J. L. Meek, K. R. Tsuchiya, B. W. Hudson, and A. M. Barnes, Experimental pathogenicity of recent North American Yersinia enterocolitica isolates, J. Infect. Dis. 129: 341–344 (1974).PubMedCrossRefGoogle Scholar
  55. 52.
    P. B. Carter, Pathogenicity of Yersinia enterocolitica for mice, Infect. Immun. 11: 164–170 (1975).PubMedGoogle Scholar
  56. 53.
    P. B. Carter and F. M. Collins, Experimental Yersinia enterocolitica infection in mice: Kinetics of growth, Infect. Immun. 9: 851–857 (1974).PubMedGoogle Scholar
  57. 54.
    P. B. Carter, C. F. Varga, and E. E. Keet, New strain of Yersinia enterocolitica pathogenic for rodents, Appl. Microbiol. 26: 1016–1018 (1973).PubMedGoogle Scholar
  58. 55.
    I. D. Ricciardi, A. D. Pearson, W. G. Suckling, and C. Klein, Long-term fecal excretion and resistance induced in mice infected with Yersinia enterocolitica, Infect. Immun. 21: 342–344 (1978).PubMedGoogle Scholar
  59. 56.
    D. A. Schiemann and J. A. Devenish, Virulence of Yersinia enterocolitica determined by lethality in Mongolian gerbils and by the Sereny test, Infect. Immun. 29: 500–506 (1980).PubMedGoogle Scholar
  60. 57.
    H. Bazin, B. Platteau, M. Janssens, and G. Wauters, Pathogenesis of post-irradiation infections I. Yersinia enterocolitica administered to normal and irradiated rats, Int. J. Radiat. Biol. 40 (3): 277–282 (1981).CrossRefGoogle Scholar
  61. 58.
    R. M. Robins-Browne, A. R. Rabson, and H. J. Koornhof, Generalized infection with Yersinia enterocolitica and the role of iron, Contrib. Microbiol. Immunol. 5: 277–282 (1979).PubMedGoogle Scholar
  62. 59.
    R. E. Smith, A. M. Carey, J. M. Demare, F. M. Hetrick, R. W. Johnston, and W. H. Lee, Evaluation of iron dextran and mucin for enhancement of the virulence of Yersinia enterocolitica serotype 0:3 in mice, Infect. Immun. 34: 550–560 (1981).PubMedGoogle Scholar
  63. 60.
    T. Une, Studies on the pathogenicity of Yersinia enterocolitica I. Experimental infection in rabbits, Microbiol. Immunol. 7: 349–363 (1977).Google Scholar
  64. 61.
    C. H. Pai, V. Mors, and T. A. Seemayer, Experimental Yersinia enterocolitica enteritis in rabbits, Infect. Immun. 28: 238–244 (1980).PubMedGoogle Scholar
  65. 62.
    M. Mäki, P. Gronroos, and T. Vesikari, In vitro invasiveness of Yersinia enterocolitica isolated from children with diarrhoea, J. Infect. Dis. 138:677–680 (1978).PubMedCrossRefGoogle Scholar
  66. 63.
    T. Une, Studies on the pathogenicity of Yersinia enterocolitica II. Interaction with cultured cells in vitro, Microbiol. Immunol. 7: 365–377 (1977).Google Scholar
  67. 64.
    V. Mors and C. H. Pai, Pathogenic properties of Yersinia enterocolitica, Infect. Immun. 28: 292–294 (1980).PubMedGoogle Scholar
  68. 65.
    P. Gemski, J. R. Lazere, and T. Casey, Plasmid associated with pathogenicity and calcium dependency of Yersinia enterocolitica, Infect. Immun. 27: 682–685 (1980).PubMedGoogle Scholar
  69. 66.
    D. L. Zink, J. C. Feeley, J. G. Wells, C. Vanderzant, J. C. Vickery, W. D. Roof, and G. A. O’Donovan, Plasmid-mediated tissue invasiveness in Yersinia enterocolitica, Nature 283: 224–226 (1980).PubMedCrossRefGoogle Scholar
  70. 66a.
    J. Heesemann, C. Keller, R. Morawa, N. Schmidt, H. J. Siemens, and R. Laufs, Plasmids of human strains of Yersinia enterocolitica: Molecular relatedness and possible importance for pathogenesis, J. Infect. Dis. 147: 107–115 (1983).PubMedCrossRefGoogle Scholar
  71. 67.
    B. A. Kay, K. Wachsmuth, and P. Gemski, New virulence-associated plasmid in Yersinia enterocolitica, J. Clin. Microbiol. 15: 1161–1163 (1982).PubMedGoogle Scholar
  72. 68.
    C. H. Pai and V. Mors, Production of enterotoxin by Yersinia enterocolitica, Infect. Immun. 19: 908–911 (1978).PubMedGoogle Scholar
  73. 69.
    R. M. Robins-Browne, C. S. Still, M. D. Miliotis, and H. J. Koornhof, Mechanism of action of Yersinia enterocolitica enterotoxin, Infect. Immun. 25: 680–684 (1979).PubMedGoogle Scholar
  74. 70.
    J. M. Boyce, D. J. Evans, D. G. Evans, and H. L. DuPont, Production of heat-stable, methanol-soluble enterotoxin by Yersinia enterocolitica, Infect. Immun. 25: 532–537 (1979).PubMedGoogle Scholar
  75. 71.
    M. C. Rao, S. Guandalini, W. J. Laird, and M. Field, Effects of heat-stable enterotoxin of Yersinia enterocolitica on ion transport and cyclic guanosine 3’,5’-monophosphate metabolism in rabbit ileum, Infect. Immun. 26: 875–878 (1979).PubMedGoogle Scholar
  76. 72.
    K. Okamoto, T. Inoue, H. Ichikawa, Y. Kawamoto, and A. Miyama, Partial purification and characterization of heat-stable enterotoxin produced by Yersinia enterocolitica, Infect. Immun. 31: 554–559 (1981).PubMedGoogle Scholar
  77. 73.
    G. Kapperud and G. Langeland, Enterotoxin production at refrigeration temperature by Yersinia enterocolitica and Yersinia enterocolitica-like bacteria, Curr. Microbiol. 5: 119–122 (1981).CrossRefGoogle Scholar
  78. 74.
    J. F. Alderete and D. C. Robertson, Purification and chemical characterization of the heat-stable enterotoxin produced by porcine strains of enterotoxigenic Escherichia coli, Infect. Immun. 19: 1021–1030 (1978).PubMedGoogle Scholar
  79. 75.
    R. Lallier, S. Lariviere, and S. St-Pierre, Escherichia coli heat-stable enterotoxin: Rapid method of purification and some characteristics of the toxin, Infect. Immun. 28: 469–474 (1980).PubMedGoogle Scholar
  80. 76.
    B. J. Stoll, R. I. Glass, M. I. Huq, M. U. Khan, H. Banu, and J. Holt, Epidemiologic and clinical features of patients infected with Shigella who attended a diarrheal disease hospital in Bangladesh, J. Infect. Dis. 146: 177–183 (1982).PubMedCrossRefGoogle Scholar
  81. 77.
    N. Khuri-Bulos, Enteric fevers in children: The importance of age in the varying clinical picture, Clin. Pediatr. 20 (7): 448–452 (1981).CrossRefGoogle Scholar
  82. 78.
    G. Acker and V. Brade, Activation of human complement by Yersinia enterocolitica: Ultrastructural alterations and C3b-deposition, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. Orig. A248: 210–228 (1980).Google Scholar
  83. 79.
    C. H. Pai and L. De Stephano, Serum resistance associated with virulence in Yersinia enterocolitica, Infect. Immun. 35: 605–611 (1982).PubMedGoogle Scholar
  84. 80.
    V. Brade and G. Kreuzpaintner, Interaction of lipopolysaccharides and of Lipid A from Yersinia enterocolitica with purified guinea pig C3, Immunobiology 156: 441–453 (1979).CrossRefGoogle Scholar
  85. 81.
    J. Hoffman, B Lindberg, and R. R. Brubaker, Structural studies of the 0-specific side-chains of the lipopolysaccharide from Yersinia enterocolitica YE 128, Carbohydr. Res. 78: 212–214 (1980).PubMedCrossRefGoogle Scholar
  86. 82.
    B. Nilehn, Electron microscopic studies on flagellation in different strains of Yersinia enterocolitica, Acta Pathol. Microbiol. Scand. 77: 527–541 (1969).PubMedCrossRefGoogle Scholar
  87. 83.
    I. Kochan, J. T. Kvach, and T. I. Wiles, Virulence-associated acquisition of iron in mammalian serum by Escherichia coli, J. Infect. Dis. 135: 623–632 (1977).PubMedCrossRefGoogle Scholar
  88. 84.
    R. J. Yancey, S. A. L. Breeding, and C. E. Lankford, Enterochelin (enterobactin): Virulence factor for Salmonella typhimurium, Infect. Immun. 24: 174–180 (1979).PubMedGoogle Scholar
  89. 85.
    K. Melby, S. Slordahl, T. J. Gutteberg, and S. A. Nordbo, Septicemia due to Yersinia enterocolitica after oval overdoses of iron, Br. Med. J. 285: 467–468 (1982).CrossRefGoogle Scholar
  90. 86.
    M. Leirisalo, H. Repo, A. Tilikainen, T. U. Kosunnen, and O. Laitinen, Chemotaxis in Yersinia arthritis: HLA-B27 positive neutrophils show high stimulated motility in vitro, Arthritis Rheum. 24: 1036–1044 (1980).CrossRefGoogle Scholar
  91. 87.
    T. Une, Studies on the pathogenicity of Yersinia enterocolitica III. Comparative studies between Y. enterocolitica and Y. pseudotuberculosis, Microbiol. Immunol. 21: 505–516 (1977).PubMedGoogle Scholar
  92. 88.
    A. Bovallius and G. Nilsson, Ingestion and survial of Y. pseudotuberculosis in HeLa cells, Can. J. Microbiol. 21: 1997–2007 (1975).Google Scholar
  93. 89.
    K. Samuelsson, B. Lindberg, and R. R. Brubaker, Structure of 0-specific side chains of lipopolysaccharide of Yersinia pseudotuberculosis, J. Bacteriol. 117: 1010–1016 (1974).PubMedGoogle Scholar
  94. 90.
    R. P. Gorshkova, N. A. Komandrova, A. I. Kalinovsky, and Y. S. Ovodov, Structural studies on the 0-specific polysaccharide side-chains of Yersinia pseudotuberculosis, Type III, lipopolysaccharides, Eur. J. Biochem. 107: 131–135 (1980).PubMedCrossRefGoogle Scholar
  95. 91.
    R. R. Brubaker, Growth of Pasteurella pseudotuberculosis in simulated intracellular and extracellular environments, J. Infect. Dis. 117: 403–417 (1967).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Thomas Butler
    • 1
    • 2
  1. 1.International Center for Diarrhoeal ResearchDhakaBangladesh
  2. 2.Case Western Reserve UniversityClevelandUSA

Personalised recommendations