Advertisement

Laser-Matter Interaction Studies at NRL

  • J. A. Stamper
  • O. C. Barr
  • J. Davis
  • G. A. Doschek
  • C. M. Dozier
  • U. Feldman
  • B. M. Klein
  • W. M. Manheimer
  • E. A. McLean
  • J. M. McMahon
  • D. J. Nagel
  • D. A. Tidman
  • R. R. Whitlock
  • K. Whitney
  • N. K. Winsor
  • F. C. Young

Abstract

Experimental and theoretical studies at NRL are directed toward understanding the interaction of a focused, high-brightness laser pulse with a solid target. The physics of laser-fusion and efficient x-ray generation are of particular interest. A Nd-doped, YAG-glass laser system is used which has rod and disc amplifiers and protection against back-reflected pulses. Experimental studies are discussed of x-ray emission, neutron production, magnetic field generation and back-reflected laser light. Theoretical studies include both analytic and numerical treatments of radiation emission and transport, magnetic field dependent plasma transport phenomena and the role of magnetic fields in plasma collective effects.

Keywords

Magnetic Field Laser Energy Radiation Pressure Neutron Production Focal Length Lens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Duguay and J.W. Hansen, “Measurement of the Nonlinear Index n2 of Glass. Using Picosecond Pulses”, Proc. 2nd, ASTM Symp. Damage in Laser Materials (1971), NBS Spec. Publ. 341, pp 45–49.Google Scholar
  2. 2.
    J.M. McMahon,“Damage Measurements with Subnanosecond Pulses”, Proc. 3rd ASTM Symp. Damage in Laser Materials (1972), NBS Special Bull. 372 pp 100–103.Google Scholar
  3. 3.
    E.S. Bliss, “Importance of Self Focusing in a Laser Amplifier with Large Beam Diameter”, IEEE Jour. Quant. Elect. 8, 2, pp 273–276 (1972).ADSCrossRefGoogle Scholar
  4. 4.
    J.A. Fleck, in press at the present time.Google Scholar
  5. 5.
    The chamber design origniated at United Aircraft Corporation and was used at NRL by permission of Dr. Alan Haught.Google Scholar
  6. 6.
    G.H. McCall, F. Young, A.W. Ehler, J.F. Kephart, and R.P. Godwin, Phys. Rev. Letts. 30 (1973) 1116.ADSCrossRefGoogle Scholar
  7. 7.
    H.R. Griem, Plasma Spectroscopy, McGraw-Hill, New York (1964).Google Scholar
  8. 8.
    D.J. Nagel et.al., VI European Conference on Controlled Fusion and Plasma Physics, Moscow, Aug. 1973.Google Scholar
  9. 9.
    D.J. Nagel, C.M. Dozier and R.R. Whitlock, unpublished and J.F. Holzrichter, C.M. Dozier, J.M. McMahon, to be published.Google Scholar
  10. 10.
    W.E. Behring, R.J. Ugransky and U. Feldman, Appl. Optics, 12, 528 (1973)ADSCrossRefGoogle Scholar
  11. 11.
    D.J. Nagel et.al., to be published.Google Scholar
  12. 12.
    P.G. Burkhalter, D.J. Nagel and R.R. Whitlock, to be published.Google Scholar
  13. 13.
    B.M. Klein, D.J. Nagel and R.R. Whitlock, to be published.Google Scholar
  14. 14.
    B.M. Klein, to be published.Google Scholar
  15. 15.
    B.M. Klein et.al., VI European Conference on Controlled Fusion and Plasma Physics, Moscow, Aug. 1973.Google Scholar
  16. 16.
    U. Feldman et.al., to be published.Google Scholar
  17. 17.
    L. Cohen et.al., J. Opt. Soc. Am. 58, 8443 (1968).Google Scholar
  18. 18.
    U. Feldman et.al., Astro. J. Letters 183, 143 (1973).CrossRefGoogle Scholar
  19. 19.
    A.H. Nucl., For a comparison of XUV sources see Gabriel, Inst. and Methods 90, 157 (1970).CrossRefGoogle Scholar
  20. 20.
    R.R. Whitlock, C.M. Dozier, D.J. Nagel, unpublished.Google Scholar
  21. 21.
    C.M. Dozier, unpublished.Google Scholar
  22. 22.
    D.J. Nagel, to be published.Google Scholar
  23. 23.
    D.J. Nagel and J.W. Criss, unpublished.Google Scholar
  24. 24.
    T.N. Lee, D.J. Nagel and R.H. Dixon, to be published.Google Scholar
  25. 25.
    D.J. Nagel, R. Pechacek and M. Gorbics, unpublished.Google Scholar
  26. 26.
    J.A. Stamper, K. Papadopoulos, R.N. Sudan, S.O. Dean and E.A. McLean and J.M. Dawson, Phys. Rev. Lett. 26, 1012 (1971).ADSCrossRefGoogle Scholar
  27. 27.
    F. Schwirzke and L.L. McKee, Proceedings of Fifth European Conference on Controlled Fusion and Plasma Physics, CEA, Grenoble, France, 1, 63 (1972).Google Scholar
  28. 28.
    R.S. Case, Jr., Bull. Am. Phys. Soc. 17, 1026 (1972).Google Scholar
  29. 29.
    D.V. Giovanielli and G.H. McCall, private communication.Google Scholar
  30. 30.
    J.A. Stamper, S.O. Dean and E.A. McLean, Laser Interaction and Related Plasma Phenomena, Vol. 2, (H. Schwarz and H. Hora, Eds.) Plenum, New York 1972, p. 281.Google Scholar
  31. 31.
    R.S. Bird, L.L. McKee, F. Schwirzke and A.W. Cooper, Phys. Rev. A, 7, 1328 (1973).ADSCrossRefGoogle Scholar
  32. 32.
    J.A. Stamper, NRL Report 7411, 1972, p. 88.Google Scholar
  33. 33.
    Some of the VUV line spectra taken at NRL have a broadening which may have a zeeman contribution.Google Scholar
  34. 34.
    D.W. Forslund, J.M. Kindel, and E.L. Lindman, Phys. Rev., Letters 30, 739 (1973).CrossRefGoogle Scholar
  35. 35.
    M.N. Rosenbluth and R.Z. Sagdeev, Comments on Modern Physics, Part E., 1, 129 (1972).Google Scholar
  36. 36.
    The results discussed here on backscatter are taken from a paper by E.A. McLean and J.M. McMahon which has been submitted for publication.Google Scholar
  37. 37.
    K. Eidmann and R. Sigel, Max-Planck-Institute für Plasma Physik, Garching; Report No. 2. p.p. IV /46, Dec. 1972.Google Scholar
  38. 38.
    M.M. Widner and T.P. Wright, Personal Communication.Google Scholar
  39. 39.
    J.B. Chase, J.L. LeBlanc and J.R. Wilson, to be published (approximately August 1973) in Physics of Fluids.Google Scholar
  40. 40.
    N. Winsor and D.A. Tidman, Communicated to Physical Review Letters.Google Scholar
  41. 41.
    Melvin M. Widner, to be published in Physics of Fluids.Google Scholar
  42. 42.
    D.A. Tidman and J.A. Stamper, Appl. Phys. Lett. 22, 498 (1973).ADSCrossRefGoogle Scholar
  43. 43.
    J. Nuckolls, L. Wood, A. Thiesen and G. Zimmerman, Nature 239, 133 (1972).ADSCrossRefGoogle Scholar
  44. 44.
    Reference 32, pgs. 2,3.Google Scholar
  45. 45.
    J.A. Stamper and D.A. Tidman, to be published in Physics of Fluids.Google Scholar
  46. 46.
    J.A. Stamper, NRL Memorandum Report 2492, August 1972.Google Scholar
  47. 47.
    Reference 32, pg. 6.Google Scholar
  48. 48.
    W.L. Kruer and J.M. Dawson, Phys. Fluids 15, 446 (1972).ADSCrossRefGoogle Scholar
  49. 49.
    Reference 32, pg. 6.Google Scholar
  50. 50.
    W. Manheimer and E. Ott, to be published.Google Scholar
  51. 51.
    S. I. Braginskii, “Reviews of Plasma Physics”, Acad. M.A. Leontovich, 1, 205 (1965).Google Scholar
  52. 52.
    J.P. Boris, D.L. Book, J. Comp. Phys. 11, 38 (1973).ADSMATHCrossRefGoogle Scholar
  53. 53.
    L.D. Landau and E.M. Lifshitz,“The Electrodynamics of Continuous Media”, Addison-Wesley, Reading, Mass., 1960, p. 67.MATHGoogle Scholar
  54. 54.
    L.P. Pitaevskii, Soviet Physics, J.E.T.P. 12, 1008 (1961).MathSciNetGoogle Scholar
  55. 55.
    The use of the vacuum form of Maxwell’s equations also follows directly, on physical grounds. On the slow time scale, D = E + 4π<P>t where the polarization P = n(—e) δd is due to the quiver excursion δd = e δE/mw2. Thus, D = E — (wp/w) 2δE)í = E. The plasma dielectricconstant is unity for the fields or Maxwell’s equations (linear in the fields) on the slow (observable) time scale. The form ε = 1— (w /42 is only valid on the fast (oscillatory) time scale. It occurs in the radiation pressure since this pressure is quadratic in the fields and velocities and these quantities are correlated on the fast time scale.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • J. A. Stamper
    • 1
  • O. C. Barr
    • 1
  • J. Davis
    • 1
  • G. A. Doschek
    • 1
  • C. M. Dozier
    • 1
  • U. Feldman
    • 1
  • B. M. Klein
    • 1
  • W. M. Manheimer
    • 1
  • E. A. McLean
    • 1
  • J. M. McMahon
    • 1
  • D. J. Nagel
    • 1
  • D. A. Tidman
    • 1
    • 2
  • R. R. Whitlock
    • 1
  • K. Whitney
    • 1
    • 2
  • N. K. Winsor
    • 1
  • F. C. Young
    • 1
  1. 1.Naval Research LaboratoryUSA
  2. 2.Science Applications, Inc.ArlingtonUSA

Personalised recommendations