Laser-Induced Implosion and Thermonuclear Burn

  • John H. Nuckolls


In high density laser induced fusion, the key idea is laser implosion of hydrogen isotope microspheres to approximately 10,000 times liquid density in order to initiate efficient thermonuclear burningl. Fusion yields 50–100 times larger than the laser energy for laser energies of 105–106 joules have been achieved in sophisticated computer simulation calculations. Most of the dense pellet is isentropically compressed to a high density Fermi-degenerate state, while thermonuclear burn is initiated in the central region. A thermonuclear burn front propagates radially outward from the central region heating and igniting the dense fuel.


Plasma Instability Fusion Energy Pellet Surface Outer Atmosphere Fusion Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Nature 239, 139, (1972).ADSCrossRefGoogle Scholar
  2. 2.
    E. Teller, Science 121, 267 (1955).ADSCrossRefGoogle Scholar
  3. 3.
    J. Nuckolls, Livermore report UCRL-74116 (1972).Google Scholar
  4. 4.
    J. Mayer, M. Mayer, Statistical Mechanics, Wiley (1940), p. 385.Google Scholar
  5. 5.
    T. Weaver, G. Zimmerman, L. Wood, Livermore report UCRL-74191/ UCRL-74352 (1972).Google Scholar
  6. 6.
    J. Shearer, UCRL-72400 (1970).Google Scholar
  7. 7.
    W. Kruer, private communication.Google Scholar
  8. 8.
    J. Katz, J. Weinstock, W. Kruer, J. DeGroot, R. Faehl, Livermore report UCRL-74334 (1972).Google Scholar
  9. 9.
    R. Kidder, Physics of High Energy Density, (1969), Academic Press, p. 315.Google Scholar
  10. 10.
    R. Kidder, J. Zink, Nucl. Fusion 12, 325 (1972).CrossRefGoogle Scholar
  11. 11.
    J. Stampen, et al., Phys. Rev. Lett. 26, 1012 (1971).ADSCrossRefGoogle Scholar
  12. 12.
    S. Braginskii,Reviews of Plasma Physics 1, 2–5 (1965).Google Scholar
  13. 13.
    L. Wood, Livermore report UCRL-74115 (1972).Google Scholar
  14. 14.
    G. Taylor, Proc. Royal Society 201A, 192 (1950).MATHCrossRefGoogle Scholar
  15. 15.
    C. Leith, LLL internal report (1962).Google Scholar
  16. 16.
    G. Zimmerman, Livermore report UCRL 50021–72–1, 107 (1972).Google Scholar
  17. 17.
    D. Post, J. Wilson, LLL internal document (1972).Google Scholar
  18. 18.
    W. Lokke, J. Ramus, LLL internal document (1972).Google Scholar
  19. 19.
    J. Chang, G. Cooper, Jour. of Comp. Phys. 6, No. 1, 1 (1970).Google Scholar
  20. 20.
    S. Bodner, Livermore report UCRL-74074 (1972).Google Scholar
  21. 21.
    L. Booth, Los Alamos report LA-4858-MS, Vol. 1 (1972).Google Scholar
  22. 22.
    B. Freeman, L. Wood, J. Nuckolls, Livermore report UCRL-74486 (1971).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • John H. Nuckolls
    • 1
  1. 1.University of California Lawrence Livermore LaboratoryLivermoreUSA

Personalised recommendations