High Power Chemical Lasers: Problems and Perspectives

  • K. L. Kompa


In recent years several scientific and technological goals have appeared that require high-energy high-power pulsed lasers. Such problems include for instance certain applications in medicine and chemistry, the pumping of x-ray lasers by laser irradiation or as the most prominent goal the achievement of controlled thermonuclear fusion by lasers. The requirements for the laser systems to be used for such purposes are quite extreme. Energies in the multikilojoule range together with subnanosecond pulse durations are needed. Besides there are other conditions to be met with respect to beam quality, pulse shape and wavelength. The lasers that have shown promise to meet such strict requirements are few, namely neodymium glass lasers, carbon dioxide lasers and — as the newest addition to this small family of lasers — the photochemical iodine laser. All three systems have the same operational concept, insofar as they employ oscillator-amplifier arrangements. The oscillator provides an input pulse to the amplifier chain of suitable duration, shape and optical quality. On propagation through the amplifier medium this pulse is brought to the desired energy and power level. Thus the amplifier has to store the energy for some time during and after the pumping and then release it as fully as possible as the input signal passes through the medium. This energy storage concept then is characterized by the following parameters.


Vibrational State High Power Laser Population Inversion Hydrogen Fluoride Small Signal Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. N. Suchard, G. C. Pimentel, Appl. Phys. Lett. 18, 530 (1971).ADSCrossRefGoogle Scholar
  2. 2.
    F. G. Sadie, P. A. Buger, O. G. Malan, J. Appl. Phys. 43, 2906 (1972).ADSCrossRefGoogle Scholar
  3. 3.
    K. L. Kompa, Chemical Lasers, Fortschritte der chem. Forschung Topics in Current Chemistry, Vol. 37, Spinger-Verlag, Berlin, Heidelberg, New York 1973.Google Scholar
  4. 4.
    A. Ben-Shaul, R. D. Levine, R. B. Bernstein, J. Chem. Phys. 57, 5427 (1972).ADSCrossRefGoogle Scholar
  5. A. Ben-Shaul, R. D. Levine, R. B. Bernstein, Chem. Phys. Lett. 15, 160 (1972).ADSCrossRefGoogle Scholar
  6. R. B. Bernstein, R. D. Levine, J. Chem. Phys. 57, 434 (1972).Google Scholar
  7. R. B. Bernstein, R. D. Levine, Chem. Phys. Lett. 15, 160 (1972).ADSCrossRefGoogle Scholar
  8. R. B. Bernstein, R. D. Levine, J. Chem. Phys. 57, 434 (1972).ADSCrossRefGoogle Scholar
  9. 5.
    R. D. Levine, B. R. Johnson, R. B. Bernstein, Chem. Phys. Lett. 19, 1 (1973).ADSCrossRefGoogle Scholar
  10. 6.
    A. Ben-Shaul, in print, J. Chem. Phys. (1973).Google Scholar
  11. 7.
    J. L. Kinsey, J. Chem. Phys. 54, 1206 (1971).ADSCrossRefGoogle Scholar
  12. 8.
    A. Ben-Shaul, G. L. Hofacker, K. L. Kompa, in print, J. Chem. Phys. (1973).Google Scholar
  13. 9.
    H. Pummer, K. L. Kompa, Appl. Phys. Lett. 20, 356 (1972).ADSCrossRefGoogle Scholar
  14. 10.
    A. N. Oraevskii, Trends in Physics, p. 95–124, European Physical Society, Geneva, Switzerland (1972).Google Scholar
  15. 11.
    M. S. Dzhidzhoev, V. T. Platonenko, R. V. Khokhlov, Sov. Phys. Uspekhi 13, 247 (1970).ADSCrossRefGoogle Scholar
  16. 12.
    For a literature survey see C. E. Wiswall, D. P. Ames, J. T. Menne, IEEE J. Quant. Electr. QE-9, 181 (1973), S. J. Arnold, H. Rojeska, Appl. Opt. 12, 169 (1973), B. M. Dobratz, Lawrence Livermore Laboratory, UCRL-51285.Google Scholar
  17. 13.
    H. Pummer, W. Breitfeld, H. Wedler, G. Klement, K. L. Kompa, Appl. Phys. Lett. 22, 319 (1973).ADSCrossRefGoogle Scholar
  18. 14.
    E. L. Patterson, R. A. Gerber, to be published, Appl. Phys. Lett. (1973), C. P. Robinson, R. J. Jensen, A. Kolb, IEEE J. Quant. Electr., Sept. 1973.Google Scholar
  19. 15.
    J. C. Polanyi, K. B. Woodall, J. Chem. Phys. 57, 1574 (1972).ADSCrossRefGoogle Scholar
  20. 16.
    N. Jonathan, C. M. Melliar-Smith, P. H. Slater, Mol. Phys. 20, 93 (1971).ADSCrossRefGoogle Scholar
  21. 17.
    C. E. Baker, J. Chem. Phys. 46, 2846 (1967).ADSCrossRefGoogle Scholar
  22. 18.
    J. L. Ahl, T. A. Cool, J. Chem. Phys. 58, 5540 (1973).ADSCrossRefGoogle Scholar
  23. 19.
    K. G. Anlauf, P. H. Dawson, J. A. Herman, J. Chem. Phys. 58, 5354 (1973)ADSCrossRefGoogle Scholar
  24. 20.
    Lawrence Livermore Laboratory, Semiannual Report, July–Dec. 1972, p. 86, UCRL–50021–72–2.Google Scholar
  25. 21.
    G. A. Kuipers, J. Mol. Spectr. 2, 75 (1958).ADSCrossRefGoogle Scholar
  26. 22.
    A. E. Siegman, An Introduction to Lasers and Masers, McGraw-Hill, 1971, p. 123.Google Scholar
  27. 23.
    T. Carrington, J. C. Polanyi, in Chemical Kinetics (Ed. J. C. Polanyi ), Butterworths University Park Press 1972.Google Scholar
  28. 24.
    Compare for instance F. P. Schafer in Laser Handbook Vol. 1, F. T. Arecchi, E. O. Schulz-Dubois, Eds., North-Holland Publishing Company, Amsterdam 1972.Google Scholar
  29. 25.
    N. G. Basov, V. A. Danilychev, Yu. M. Popov, Sov. J. Quant. Electr. 1, 18 (1971).ADSCrossRefGoogle Scholar
  30. H. W. Koehler, L. J. Ferderber, D. L. Redhead, P. E. Ebert, Appl. Phys. Lett. 21, 198 1972.ADSCrossRefGoogle Scholar
  31. C. K. Rhodes, 1973 IEEE/OSA Conf. on Laser Engineering and Applications, Washington, D.C. May 30 - June 1, 1973.Google Scholar
  32. 26.
    J. D. Shipman, Jr., Appl. Phys. Lett. 10, 3 (1967).ADSCrossRefGoogle Scholar
  33. 27.
    R. Sigel, to be published. Appl. Phys. Lett. 10, 5 (1964).Google Scholar
  34. 28.
    R. J. Jensen, private communication, see also for instance C. E. Turner, Jr., Y. L. Pan, D. J. Blasberg, Lawrence Livermore Laboratory, UCID-16120.Google Scholar
  35. 29.
    R. Srinivasan, 3rd Winter Symp. on Quantum Electr., Alta, Utah, Jan. 22–24, 1973.Google Scholar
  36. 30.
    J. B. Gerardo, A. Wayne Johnson, 1973 IEEE/OSA Conf. on Laser Engineering and Applications, Washington, D.C., May 30 - June 1, 1973.Google Scholar
  37. 31.
    K. Hohla, The Iodine Laser, a High Power Gas Laser, this volume.Google Scholar
  38. 32.
    R. E. Meredith, F. G. Smith, J. Quant. Spectr. Rad. Trans. 13, 89 (1973).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • K. L. Kompa
    • 1
  1. 1.Max-Planck-Institut fur PlasmaphysikEuratom AssociationGarchingGermany

Personalised recommendations