High Power U.V. — Preionized CO2 Lasers

  • M. C. Richardson


Much of the interest currently expressed in CO2 lasers of extremely high peak power arises because of the possibility of their incorporation into various schemes aimed at producing thermonuclear fusion. Proposals in which uniform irradiation by a specially shaped laser pulse of a solid or hollow spherical target induces a high compression of the thermonuclear material have lead to predicted required laser energies which should be realizable in the near future (l,2). In addition the possibility of using high power CO2 lasers to heat lower density, magnetically confined plasmas to thermonuclear conditions has also been considered (3). In both these approaches there is implicit the development of efficient, large aperture uniform CO2 laser beams capable of sustaining high power pulses of controllable shape and duration. Since the development of pulsed, transversely excited high pressure gas lasers(4,5), several different schemes have been devised for the excitation of large volumes of laser gas mixtures with high optical gain and energy extraction. At the present time the most promising approaches to this problem appear to be those of the so-called “double discharge” technique (6,7), the electron beam controlled discharge(8), and discharges incorporating U.V. photo-preionization(9). The present paper will discuss the principal features of the latter technique, and, in addition, various methods of producing ultrashort pulses with U.V. photo-preionized CO2 lasers will be described. Some initial results on the amplification of ultrashort pulses, obtained with an oscillator-plifier laser system, will also be described.


Saturable Absorber Rotational Line Small Signal Gain Main Discharge Short Wavelength Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Nuckolls, L. Wood, A. Thiessen and G. Zimmerman, Nature, London 239, 139 (1972).ADSCrossRefGoogle Scholar
  2. 2.
    J.S. Clarke, H.N. Fisher and R.J. Mason Phys. Rev. Letts. 30, 89, (1973).ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Dawson, R.E. Kidder and A. Hertzberg, MATT Report No. 782 (1971).Google Scholar
  4. 4.
    R. Dumanchin and J. Rocca-Serra, C.R. Acad. Sci. (Paris) 269B, 916 (1969).Google Scholar
  5. 5.
    A.J. Beaulieu, Appl. Phys. Letts., 16, 524 (1972).Google Scholar
  6. 6.
    A.K. Laflamme, Rev. Sci, Instr. 41, 1578 (1970).ADSCrossRefGoogle Scholar
  7. 7.
    R. Dumanchin, M. Michon, J.C. Farcy, G. Boudinet and J. Rocca-Serra, IEEE. J. Quant. Electr. QE-8, 163 (1972).Google Scholar
  8. 8.
    C.A. Fenstermacher, M.J. Nutter, W.T. Leland and K. Boyer. Appl. Phys. Letts. 20, 56 (1972).ADSCrossRefGoogle Scholar
  9. 9.
    M.C. Richardson, A.J. Alcock, K. Leopold and P. Burtyn, IEEE. J. Quant. Electr., QE9, 236 (1973).ADSCrossRefGoogle Scholar
  10. 10.
    P.R. Pearson and H.M. Lamberton, IEEE. J. Quant. Electr. QE-8, 145 (1972).ADSCrossRefGoogle Scholar
  11. 11.
    E. Wiedermann. Zt. f. Electrochem. p. 159, (1895).Google Scholar
  12. 12.
    Hoffmann, see Wied. Ann. L.X. p. 269 (1897)Google Scholar
  13. 13.
    J.J. Thomson, Proc. Camb. Phil. Soc X, 74 (1899).Google Scholar
  14. 14.
    E.R. Laird, Phys. Rev. XXIX, 225 (1909) and Phys. Rev. XXX, 293 (1910).Google Scholar
  15. 15.
    C.E. Wynne-WilliamsPhil Mag S7, 1., 353 (1926).Google Scholar
  16. 16.
    see for instance: K. Watanabe, M. Zelikoff and E.C. Lin, Geophysical Res. Report No. 21, 19 (1952).Google Scholar
  17. 17.
    H. Raether Zt. Physik 110, 611 (1938).CrossRefGoogle Scholar
  18. 18.
    G.R. Bainbridge and W.A. Prowse, Can. J. Phys. 34, 1038 (1956).ADSCrossRefGoogle Scholar
  19. 19.
    H. Seguin and J. Tulip, Appl. Phys. Letts. 21, 414 (1972).ADSCrossRefGoogle Scholar
  20. 20.
    O.P. Judd, Appl. Phys. Letts. 22, 95 (1973).Google Scholar
  21. 21.
    A. Javan and J.S. Levine, IEEE. J. Quant. Electr. QE-8 827 (1972).Google Scholar
  22. 22.
    J.S. Levine and A. Javan, Appl. Phys. Letts. 22, 55 (1973).ADSCrossRefGoogle Scholar
  23. 23.
    A.V. Eletskii and B.M. Smirnov, Sov. Phys. Doklady 15, 109 (1970).ADSGoogle Scholar
  24. 24.
    D.G. Pellinen and P.W. Spence Rev. Sci. Inst. 42, 1699 (1971).ADSCrossRefGoogle Scholar
  25. 25.
    M.C. Richardson, K. Leopold and A.J. Alcock, IEEE. J. Quant. Electr. QE-9, 934 (1973).Google Scholar
  26. 26.
    As observed in vacuum spark discharges across dielectrics, see for instance W.R.S. Garton. J. Sci. Instr. 36, 11 (1959) and G.H.C. Freeman, Proc. Phys. Soc 86, 117 (1965).Google Scholar
  27. 27.
    J.F. Figueira, W.H. Reichelt, G.T. Schappert, T.F. Stratton and C.A. Fenstermacher. Appl. Phys. Letts. 22, 216 (1973).ADSCrossRefGoogle Scholar
  28. 28.
    D.L. Smith and D.L. Davis, presented at Conf. on Laser Engineering and Applications paper 2–5,Washington DC (1973). See IEEE. J. Quant. Electr. QE9, 635 (1973).Google Scholar
  29. 29.
    O.R. Wood, R.L. Abrams and T.J. Bridges, Appl. Phys. Letts. 17, 376 (1970).ADSCrossRefGoogle Scholar
  30. 30.
    A. Nurmikko, T.A. DeTemple and S.E. Schwartz, Appl. Phys. Letts. 18, 130 (1971).ADSCrossRefGoogle Scholar
  31. 31.
    A.F. Gibson, M.F. Kimmitt and C.A. Rosito, Appl. Phys. Letts. 18, 546 (1972).ADSCrossRefGoogle Scholar
  32. 32.
    D.L. Lyon, E.V. George and H.A. Haus, Appl. Phys. Letts. 17, 474 (1970).ADSCrossRefGoogle Scholar
  33. 33.
    R. Fortin, F. Rheault, J. Gilbert, M. Blanchard and J.L. Lachambre, Can. J.,Phys. 51, 414 (1973).ADSCrossRefGoogle Scholar
  34. 34.
    M.C. Richardson, (to be published).Google Scholar
  35. 35.
    A.J. Alcock, M.C. Richardson and K. Leopold, Rev. Sci. Inst. 41, 1028 (1970).ADSCrossRefGoogle Scholar
  36. 36.
    M.C. Richardson, presented at Conference on Laser Eng. and Appl., paper 11–5, Washington D.C. May 1973. IEEE. J. Quant. Electr. QE9, 681 (1973).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • M. C. Richardson
    • 1
  1. 1.Division of PhysicsNational Research Council of CanadaOttawaCanada

Personalised recommendations