Laser-Induced Coherent Decay of Photons for Plasma Heating

  • P. Leonardo Mascheroni


The problem of the non-linear beating of two monochromatic waves in a plasma seems of interest to an understanding of the light reflection problem found in laser fusion related experiments [1],as well as for the heating of a confined plasma by the beating of two lasers [2]. With regard to our title, the electromagnetic radiation from one laser can be seen as a beam of photons. From this point of view, the induced processes by another laser can be called“induced coherent decay of photons.”


Plasma Wave Stimulate Raman Scattering Plasma Heating Stimulate Brillouin Scattering Inhomogeneous Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [(1)]
    Independently reported at this workshop by M. Lubin, et al.; K. Brueckner; C. Yamanaka, et al; J.L. Bobin, et al.Google Scholar
  2. [(2)]
    M. N. Rosenbluth, C. S. Liu, Phys. Rev. Lett., 29, 701 (1972);ADSCrossRefGoogle Scholar
  3. A. Kaufman, B. Cohen, Phys. Rev. Lett., 30, 1306 (1973);ADSCrossRefGoogle Scholar
  4. B. Cohen, A. Kaufman, K. M. Watson, Phys, Rev. Lett., 29, 581 (1972); A. G. Engelhardt (to be published).ADSCrossRefGoogle Scholar
  5. [(3)]
    D. W. Forslund, J. M. Kindel, E. L. Lindman, Phys. Rev. Lett., 30, 739 (1973).ADSCrossRefGoogle Scholar
  6. [(4)]
    Independent report by R. L. Morse and W. Manheimer, et al., this workshop.Google Scholar
  7. [(5)]
    W. L. Kruer, et al., UCRL report 74947, this pro-ceeding.Google Scholar
  8. [(6)]
    D. F. DuBois, LASL report LA-UR 73–1123, these proceedings.Google Scholar
  9. [(7)]
    R. Kidder, Proc. of Internat. School of Physics “Enrico Fermi” Course XLVIII, Adademic, N.Y., (1971).Google Scholar
  10. P. K. Kaw and J. M. Dawson, Phys. of Fluids, 12 2558 (1969)Google Scholar
  11. [(7)]
    V. Tsytovich, Non-Linear Effects in Plasma, Plenum, N.Y.,(1970). B. D. Fried, R. Gould, G. Schmidt, UCLA pre-print PPG 146 (to be published).Google Scholar
  12. J. Drake, P. K. Kaw, Y. C. Lee, G. Schmidt, C. S. Liu, M. N. Rosenbluth, UCLA pre-print PPG 158 (to be published).Google Scholar
  13. D. F. DuBois, M. Goldman, Phys. Rev., 164, 207, (1967).ADSCrossRefGoogle Scholar
  14. K. Nishikawa, J. Phys. Soc. Japan, 24,-916, 1152 (1968).Google Scholar
  15. D. F. DuBois, LASL pre-print LA-UR 73–1123.Google Scholar
  16. [(9)]
    D. Armush, B. D. Fried, C. F. Kennel, K. Nishikawa, A. Y. Wong, UCLA pre-print PPG-139. These authors consider the case of two pumps of arbitrary strength with infinite wavelength, frequencies near the plasman modes, w th a difference of the order of a phonon mode.Google Scholar
  17. [(10)]
    E. A. Frieman, J. Math Phys., 4, 410 (1963)MathSciNetADSMATHCrossRefGoogle Scholar
  18. R. Davidson, Methods in Nonlinear Plasma Theory, Academic Press, N.Y.,(1973).Google Scholar
  19. [(11)]
    M. N. Rosenbluth, Phys. Rev. Lett., 29, 565 (1972).ADSCrossRefGoogle Scholar
  20. [(12)]
    C. S. Liu, M. N. Rosenbluth, R. B. White, Inst. For Adv. Studies report C00 3237–11 (to be published).Google Scholar
  21. [(13)]
    D. Pesme, G. Laval, R. Pellat, Phys. Rev. Lett., 31, 203, (1973).ADSCrossRefGoogle Scholar
  22. [(14)]
    J. Armstrong, N. Bloembergen, J. Dusinga, P. Pershan, Phys. Rev., 127, 1918 (1962).ADSCrossRefGoogle Scholar
  23. [(15)]
    P. L. Mascheroni, (to be published).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • P. Leonardo Mascheroni
    • 1
  1. 1.Center for Statistical Mechanics and ThermodynamicsThe University of Texas at AustinAustinUSA

Personalised recommendations