Nonlinear Behavior of Light-Driven Plasma Instabilities

  • W. L. Kruer
  • K. G. Estabrook
  • J. J. Thomson


A common feature of light-plasma coupling is the excitation of plasma instabilities by the intense laser light. The instabilities give rise to light absorption, reflection and the production of energetic particles. The nonlinear behavior of many of these instabilities has been examined in computer simulations and theory. We present a nonlinear theory for the turbulent heating due to parametric instabilities near the critical density (where the laser light frequency equals the electron plasma frequency). The linear instability is saturated by mode coupling of unstable electron plasma waves into Landau damped ones, and the electrons are heated by velocity space diffusion in the plasma waves. The theoretical predictions are in good agreement with computer simulation results. We also present computer simulations of laser light back-scattering in the underdense plasma outside the critical density due to the Raman and Brillouin instabilities. The light reflection is shown to decrease rapidly as the ratio of the light pressure to the plasma pressure is made small. Several techniques to suppress these reflective processes are demonstrated. Finally we briefly discuss recent simulations of the 2 ωpe decay instability and self-focusing.


Energetic Particle Plasma Wave Critical Density Collisionless Plasma Pump Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. P. Silin, Sov. Phys. - JETP 21, 1127 (1965).ADSGoogle Scholar
  2. D. F. DuBois and M. V. Goldman, Phys. Rev. Letters 14, 544 (1965)MathSciNetADSMATHCrossRefGoogle Scholar
  3. K. Nishikawa, J. Phys. Soc. Japan 24, 916 (1968).ADSCrossRefGoogle Scholar
  4. 2.
    V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas ( Pergamon Press, New York, 1964 ) p. 260.Google Scholar
  5. P. Freidberg, R. W. Mitchell, R. L. Morse and L. I. Rudsinski, Phys. Rev. Letters 28, 795 (1972).ADSCrossRefGoogle Scholar
  6. 3.
    J. Nuckolls, L. Wood, A. Thiessen and G. Zimmerman, Nature 239, 139 (1972).ADSCrossRefGoogle Scholar
  7. 4.
    R. E. Kidder and J. W. Zink, Nucl. Fusion 12, 325 (1972).CrossRefGoogle Scholar
  8. 5.
    W. L. Kruer and J. M. Dawson, Phys. Fluids 15, 446 (1972)ADSCrossRefGoogle Scholar
  9. J. S. DeGroot and J. I. Katz, Phys. Fluids 16, 401 (1973).ADSCrossRefGoogle Scholar
  10. 6.
    J. J. Thomson, R. J. Faehl and W. L. Kruer, UCRL-74686 (April 1973), submitted to Phys. Rev. Letters.Google Scholar
  11. 7.
    J. I. Katz, J. Weinstock, W. L. Kruer, J. S. DeGroot and R. J. Faehl, UCRL-74334 (Sept. 1972), Phys. Fluids (Oct. 1973 ).Google Scholar
  12. 8.
    H. Driecer, R. Ellis and J. Ingraham, LA-UR-73–481 (1973), submitted to Physical Review Letters.Google Scholar
  13. 9.
    J. W. Shearer, S. W. Mead, J. Petruzzi, F. Rainer, J. E. Swain and C. E. Violet: Phys. Rev. A 6, 764 (1972).ADSCrossRefGoogle Scholar
  14. 10.
    J. J. Thomson, R. J. Faehl, W. L. Kruer and S. Bodner, UCRL74945 (July, 1973), submitted to Phys. Fluids.Google Scholar
  15. 11.
    J. S. DeGroot (private communication).Google Scholar
  16. 12.
    E. Valeo, C. Oberman and F. Perkins: Phys. Rev. Letters 28, 340 (1972)ADSCrossRefGoogle Scholar
  17. D. F. DuBois and M. V. Goldman: Ibid 28, 218 (1972)CrossRefGoogle Scholar
  18. Y. Kuo and J. Fejer: Ibid 29, 1667 (1972)CrossRefGoogle Scholar
  19. W. L. Kruer and E. J. Valeo: Phys. Fluids 16, 675 (1973).ADSCrossRefGoogle Scholar
  20. 13.
    J. Denavit (private communication).Google Scholar
  21. 14.
    L. M. Gorbunov and V. P. Silin: Sov. Phys. Tech. Phys. 14, 1 (1969).ADSGoogle Scholar
  22. 15.
    M. V. Goldman and D. F. DuBois: Phys. Fluids 8, 1404 (1965).ADSCrossRefGoogle Scholar
  23. 16.
    D. W. Forslund, J. M. Kindel and E. L. Lindman: Phys. Rev. Letters 30, 739 (1973).ADSCrossRefGoogle Scholar
  24. 17.
    W. L. Kruer, K. G. Estabrook and K. H. Sinz, UCRL-74676 (May, 1973), submitted to Nuclear Fusion.Google Scholar
  25. 18.
    A. Galeev, G. Laval, T. O’Neil, M. Rosenbluth, and R. Sagdeev: Sov. Phys. JETP Letters 17, 35 (1973).ADSGoogle Scholar
  26. 19.
    W. L. Kruer: Phys. Fluids 15, 2423 (1972).ADSCrossRefGoogle Scholar
  27. 20.
    M. N. Rosenbluth: Phys. Rev. Letters 28, 565 (1972).ADSCrossRefGoogle Scholar
  28. 21.
    C. L. Tang: J. of Appl. Phys. 37, 2945 (1965).ADSCrossRefGoogle Scholar
  29. 22.
    E. Valeo and C. Oberman: Phys. Rev. Letters 30, 1035 (1973).ADSCrossRefGoogle Scholar
  30. 23.
    M. V. Goldman: Annals of Physics 38, 117 (1966)ADSCrossRefGoogle Scholar
  31. E. A. Jackson: Phys. Rev. 153, 235 (1967).ADSCrossRefGoogle Scholar
  32. 24.
    A. B. Langdon, B. F. Lasinski, and W. L. Kruer, Interaction and Related Plasma Phenomena, UCRL-75018 (August, 1973 ).Google Scholar
  33. 25.
    W. L. Kruer and J. M. Dawson: Phys. Fluids 14, 1003 (1971).ADSCrossRefGoogle Scholar
  34. 26.
    H. Hora, Proceedings of the First Workshop on Laser Interaction and Related Plasma Phenomena ( Plenum Press, New York, (1971) p. 383–426.Google Scholar
  35. 27.
    A. B. Langdon and B. F. Lasinski, UCRL-75029 (August, 1973 ).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • W. L. Kruer
    • 1
  • K. G. Estabrook
    • 1
  • J. J. Thomson
    • 1
  1. 1.University of California Lawrence Livermore LaboratoryLivermoreUSA

Personalised recommendations