Microwave Studies of Magnetically Induced Counterstreaming Interactions in Laser-Produced Plasma

  • Augustine Y. Cheung


With a single wire conductor, microwave radiation can be guided through a plasma so that high spatial resolution (~0.5 cm) can be realized at X-band frequencies (λ ≃ 3 cm). Dispersion relations governing a longitudinally magnetized single wire cavity filled with a plasma have been calculated. A Fabry-Perot single wire cavity capable of giving fast time resolution (~50 nanoseconds) was used to study momentum couplings between a flowing laser-produced plasma (U ~ 107 cm/sec) and a photoionized background. The results indicate a collisionless coupling occurs when a 700 gauss transverse external magnetic field is present. Such couplings may be due to the onset of magnetized two-stream instabilities.


Laser Plasma Langmuir Probe Single Wire Interferometer System Momentum Transfer Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.O. Dean, E.A. McLean, J.A. Stamper, and H.R. Griem: Phys. Rev. Letters 27, 487 (1971)ADSCrossRefGoogle Scholar
  2. S.O. Dean, E.A. McLean, J.A. Stamper, and H.R. Griem: Phys. Rev. Letters 29, 569 (1972).ADSCrossRefGoogle Scholar
  3. 2.
    K. Papadopoulos, R.C. Davidson, J.M. Dawson, I. Haber, D.A. Hammer, N.A. Krall, and R. Shanny: Phys. Fluids 14, 849 (1971).ADSCrossRefGoogle Scholar
  4. 3.
    T.P. Wright: Phys. Rev. Letters 28, 268 (1972).ADSCrossRefGoogle Scholar
  5. 4.
    A.Borisenko and G. Kirichenko: JETP Letts. 16, 247 (1972).ADSGoogle Scholar
  6. 5.
    H.W. Friedman and R.M. Patrick: Phys. Fluids 14, 1889 (1971).ADSCrossRefGoogle Scholar
  7. 6.
    P.T. Rumsby, J.W.M. Paul, and J. Beaulieu: Bull. Am. Phys. Soc. 16, 1191 (1971).Google Scholar
  8. 7.
    D.W. Koopman: Phys. Fluids 14, 1707 (1971).ADSCrossRefGoogle Scholar
  9. 8.
    A.Y. Cheung and D.W. Koopman: Rev. Sci. Instrum. 43, 1444 (1972).CrossRefGoogle Scholar
  10. 9.
    S. Segall and D.W. Koopman: Phys. Fluids to be published, 1973 .Google Scholar
  11. 10.
    D.W. Koopman: Phys. Fluids 15, 1959 (1972)ADSCrossRefGoogle Scholar
  12. 11.
    R.W. Kilb: Mission Research Corp. Report MRC-R-18 March, 1972 .Google Scholar
  13. 12.
    A.Y. Cheung, M.S. Thesis, and Univ. of Md. Tech. Note BN-696 (1971).Google Scholar
  14. 13.
    J. Polman: Rev. Sci. Instr. 38, 1631 (1967).ADSCrossRefGoogle Scholar
  15. 14.
    W. Makios: Rev. Sci. Instr. 38, 352 (1966).ADSCrossRefGoogle Scholar
  16. 15.
    A.Y. Cheung and D.W. Koopman: IEEE Trans. on Plasma Science (to be published, 1973 ).Google Scholar
  17. 16.
    H.M. Barlow and A.E. Karbowiak: Proc. of IEEE, pt. III, 68, (November, 1953 ).Google Scholar
  18. 17.
    R.E. Collin: Foundation for Microwave Engineering (McGraw, Hill), pg. 338 (1966).Google Scholar
  19. 18.
    L. Spitzer, Jr., Physics of Fully Ionized Gases (Interscience, New York, 1962), 2nd ed., Chap. 5Google Scholar
  20. 19.
    G. Cano and R. Dressel: Phys. Rev. 139, A1883 (1965).ADSCrossRefGoogle Scholar
  21. 20.
    D.W. Koopman and R.R. Goforth, University of Maryland Tech. Note BN-762, unpublished (June 1973).Google Scholar
  22. 21.
    J.B. McBride, E. Ott, J.P. Boris, and J.H. Orens: Phys. Fluids 15, 2367 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Augustine Y. Cheung
    • 1
  1. 1.Institute for Fluid Dynamics and Applied MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations