Immobilized Chloroplast Membranes: Effects of Cations and Antichaotropes Anions

  • Brigitte Thomasset
  • Jean-Noël Barbotin
  • Daniel Thomas


Biophotolysis of water, photohydrogen production and ATP regeneration can be used for the direct bioconversion of solar energy and have been studied by numerous authorsl. Isolated chloroplast membranes are able to perform the photolysis of water, but the stability of photosystems over a long period of time is a crucial limitation for technological applications.


Continuous Stir Tank Reactor Chloroplast Membrane Potassium Citrate Photoacoustic Spectroscopy Functional Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Benemann, K. Miyamoto and P.C. Hallenbeck, Bioengineering aspects of biophotolysis, Enzyme Microb. Technol. 2: 103 (1980).CrossRefGoogle Scholar
  2. 2.
    M. Joussaume and R. Bourdu, Retention of properties by chloroplasts upon storage outside their original cellular medium, Biol. Cell 47: 251 (1983)Google Scholar
  3. 3.
    J. Barber, Influence of surface charges on thylakoid structure and function, Ann. Rev. Plant Physiol. 33: 261 (1982)CrossRefGoogle Scholar
  4. 4.
    G. Kulandaivelu and D.O. Hall, Stabilization of the photosynthetic activities of isolated spinach chloroplasts during prolonged ageing, Z. Naturforsch 31: 452 (1976)Google Scholar
  5. 5.
    G. Papageorgiou, Stabilization of chloroplasts and subchloroplast particles, Methods Enzymol. 69: 613 (1980).CrossRefGoogle Scholar
  6. 6.
    A. Tanaka and S. Fukui, Immobilized organelles in: “Immobilized cells and organelles”, Mattiasson, ed., CRC Press, (1983).Google Scholar
  7. 7.
    B.L. Epel and J. Neuman, The mechanism of the oxidation of ascorbate and Mgt+ by chloroplasts. The role of the radical superoxide, Biochim. Biophys. Acta 325: 520 (1973)CrossRefGoogle Scholar
  8. 8.
    B. Thomasset, T. Thomasset, A. Vejux, J. Jeanfils, J.N. Barbotin and D. Thomas, Immobilized thylakoids in a cross-linked albumin matrix: effects of cations studied by electron microscopy, fluorescence emission, photoacoustic spectroscopy, and kinetic measurements, Plant Physiol. 70: 714 (1982).CrossRefGoogle Scholar
  9. 9.
    G. Mac Kinney, Absorption of light by chlorophyll solutions, J. Biol. Chem. 140: 315 (1941).Google Scholar
  10. 10.
    D. Laval-Martin, D. Grizeau and R. Calvayrac, Characterization of resistant Euglena: greater tolerance for various herbicides and increased sensitivity of thylakoids to ethyl-s- dipropylthiocarbamate. Plant Sci. Letters 29: 155 (1983).CrossRefGoogle Scholar
  11. 11.
    D. Thomas and G. Broun, Artificial enzyme membranes. Methods Enzymol. 44: 901 (1976)CrossRefGoogle Scholar
  12. 12.
    B. Thomasset, J.N. Barbotin and D. Thomas. The effects of oxygen solubility and high concentrations of salts on photosynthetic electron transport of chloroplast membranes, Biochem. J. 218: 539 (1984)Google Scholar
  13. 13.
    M.F. Cocqueinpot and D. Thomas, Immobilized chloroplast membranes: kinetic aspects of their continuous use in batch and chemostat, Enzyme Microb. Technol. 6: 321 (1984)CrossRefGoogle Scholar
  14. 14.
    W.R. Vieth, K. Venkatasubramanian, A. Constantinides and B. Davidson, Design and analysis of immobilized enzymes and immobilized microbial cells, Appl. Biochem. Bioeng. 1: 221 (1976).Google Scholar
  15. 15.
    C. Sironval, M. Brouers, J.M. Michel and Y. Kuiper, The reduction of photochlorophyllide into chlorophyllide I. The kinetics of the P 657–647 P 688–676 phototransformation, Photosynthetica 2: 268 (1968)Google Scholar
  16. 16.
    B. Thomasset, T. Thomasset, J.N. Barbotin and A.M. Vejux, Photoacoustic spectroscopy of active immobilized chloroplast membranes, Appl. Optics 21: 124 (1982)CrossRefGoogle Scholar
  17. 17.
    D. Cahen, S. Malkin and E.I. Lerner, Photoacoustic spectroscopy of chloroplast membranes: listening to photosynthesis, FEBS Lett. 91: 339 (1978)CrossRefGoogle Scholar
  18. 18.
    J.N. Barbotin and B. Thomasset, Immobilized organelles and whole cells into protein foam structures: scanning and transmission electron microscopic observations, Biochimie 62: 359 (1980)CrossRefGoogle Scholar
  19. 19.
    S. Izawa and N.E. Good, Effect of salts and electron transport on the conformation of isolated chloroplasts II: electron microscopy, Plant Physiol. 41: 552 (1966)Google Scholar
  20. 20.
    D. Wong, Govindjee and H. Merkelo, Effects of bulk pH and of monovalent and divalent cations on chlorophyll a fluorescence and electron transport in pea thylakoids, Biochim. Biophys. Acta, 592: 546 (1980)CrossRefGoogle Scholar
  21. 21.
    J.M. Howell, W.R. Vieth, Biophotolytic membranes: simplified kinetic model of photosynthetic electron transport, J. Mol. Cat. 16: 245 (1982).CrossRefGoogle Scholar
  22. 22.
    A. Friboulet and D. Thomas, Electrical excitability of artificial enzyme membranes. I. ion-exchange properties of synthetic properties films, Biophys. Chem. 16: 139 (1982)CrossRefGoogle Scholar
  23. 23.
    M.F. Cocquempot, B. Thomasset, J.N. Barbotin, G. Gellf and D. Thomas, Comparative stabilization of biological photosystems by several immobilization procedures, 2. storage and functional stability of immobilized procedures, Eur. J. Appl. Microbiol. Biotechnol. 11: 193 (1981)CrossRefGoogle Scholar
  24. 24.
    B.A. Zilinskas and R.E. Glick, Monovalent intermolecular forces in phycobilisomes of “Porphyridium cruentum”, Plant Physiol. 68: 447 (1981)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Brigitte Thomasset
    • 1
  • Jean-Noël Barbotin
    • 1
  • Daniel Thomas
    • 1
  1. 1.Laboratoire de Technologie Enzymatique, UA 523 du CNRSUniversité de Technologie de CompiègneCompiegne CedexFrance

Personalised recommendations