The Anion and Calcium Requirement of the Photosynthetic Water Splitting Complex

  • Peter H. Homann
  • Yorinao Inoue

Abstract

Considerable evidence has accumulated which suggests that Cl and Ca2+ are essential participants in the process of photosynthetic water oxidation. However, without special treatments of membrane preparations from chloroplast thylakoids, neither anions, nor Ca2+, need to be provided to assure water oxidizing activity. Apparently, these ions are very strongly held at the water ozidizing site of the thylakoid membrane. An alternative, albeit less likely, possibility would be that a need for any one of the ions is artifactual and a consequence of a perturbation caused by the “depletion” treatment.

Keywords

Chlorophyll Recombination Catalysis Lysine CaCl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Izawa, R. L. Hind, and G. Hind, The role of chloride in photosynthesis, II, Biochim. Biophys. Acta. 180: 388 (1969).Google Scholar
  2. 2.
    C. Critchley, I. C. Bainu, Govindjee and H. S. Gutowsky, The role of chloride in O2 evolution by thylakoids from salt tolerant higher plants, Biochim. Biophys. Acta. 682: 436 (1982).CrossRefGoogle Scholar
  3. 3.
    S. M. Theg and P. H. Homann, Light-pH-, and uncoupler dependent association of chloride with chloroplast thylakoids, Biochim. Biophys. Acta 679: 221 (1982).CrossRefGoogle Scholar
  4. 4.
    J. M. Bove, C. Bovê, F. R. Whatley and D. I. Arnon, Chloride requirement for O2 evolution in photosynthesis, Z. Naturforsch. 18b: 863 (1963).Google Scholar
  5. 5.
    P. O. Sandusky and C. F. Yocum, The Chloride requirement for photosynthetic oxygen evolution, Biochim. Biophys. Acta 766: 603 (1984).CrossRefGoogle Scholar
  6. 6.
    D. A. Berthold, G. T. Babcock and C. F. Yocum, A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes, FEES Lett. 134: 231 (1981).CrossRefGoogle Scholar
  7. 7.
    M. Miyao and N. Murata, Partial disintegration and reconstitution of the photosynthetic oxygen evolving system, Biochim. Biophys. Acta 725: 87 (1983).CrossRefGoogle Scholar
  8. 8.
    A. W. Rutherford, A. R. Crofts and Y. Inoue, Thermoluminescence as a probe of photosystem II photochemistry, Biochim. Biophys. Acta 682: 457 (1982).Google Scholar
  9. 9.
    P. M. Kelley and S. Izawa, The role of chloride in photosynthesis, I, Biochim. Biophys. Acta 502: 198 (1978).CrossRefGoogle Scholar
  10. 10.
    I. H. Segel, “Enzyme Kinetics”, Wiley and Sons, Inc. New York (1975).Google Scholar
  11. 11.
    A. Imaoka, M. Yanagi, K. Akabori and Y. Toyoshima, Reconstitution of photosynthetic charge accumulation and oxygen evolution in CaC12 treated PSII particles, FEBS Lett. 176: 341 (1984).CrossRefGoogle Scholar
  12. 12.
    D. F. Ghanotakis, J. N. Topper and C. F. Yocum, Structural organization of the oxidizing side of photosystem II, Biochim. Biophys. Acta 767: 524 (1984).Google Scholar
  13. 13.
    M. Miyao and N. Murata, Calcium ions can be substituted for the 24 kDa polypeptide in photosynthetic oxygen evolution, FEBS Lett. 168: 118 (1984)CrossRefGoogle Scholar
  14. 14.
    D. W. Becker and J. J. Brand, in “Advances in Photosynthesis Research”, Vol. II, C. Sybesma ed., Martinus Nijhoff/Dr. W. Junk, Publ., The Hague (1983).Google Scholar
  15. 15.
    T. Ono and Y. Inoue, Requirement of divalent cations for photo-activation of the latent water oxidation systems in intact chloroplasts from flashed leaves. Biochim. Biophys. Acta 723: 191 (1983).CrossRefGoogle Scholar
  16. 16.
    S. Itoh, C. T. Yerkes, H. Koike, H. H. Robinson and A. R. Crofts, Effects of chloride depletion on electron donation from the water oxidizing complex to the photosystem II reaction center as measured by the microsecond rise of chlorophyll fluorescence in isolated pea chloroplasts, Biochim. Biophys. Acta 766: 612 (1984).CrossRefGoogle Scholar
  17. 17.
    S. M. Theg, P. A. Jursinic and P. H. Homann, Studies on the mechanism of chloride action on photosynthetic water oxidation, Biochim. Biophys. Acta 766: 636 (1984).CrossRefGoogle Scholar
  18. 18.
    B. Kok, B. Forbush and M. McGloin, Cooperation of charges in photosynthetic oxygen evolution, I, Photochem. Photobiol. 11: 457 (1970).CrossRefGoogle Scholar
  19. 19.
    I. Vass, G. Horvath, T. Herczeg and S. Demeter, Photosynthetic energy conservation investigated by thermoluminescence, Biochim. Biophys. Acta 634: 140 (1981).CrossRefGoogle Scholar
  20. 20.
    A. W. Rutherford, G. Renger, H. Koike and Y. Inoue, Thermoluminescence as probe of PSII: The redox and protonation states of the secondary acceptor quinone and the O2 evolving enzyme, Biochim. Biophys. Acta 767: 548 (1984).CrossRefGoogle Scholar
  21. 21.
    L. Zaki, Anion transport in red blood cells and arginine specific reagents, FEBS Lett. 169: 234 (1984).CrossRefGoogle Scholar
  22. 22.
    F. C. Kokesh and F. H. Westheimer, A reporter group at the active site of acetoacetate carboxylase, II, J. Am. Chem. Soc. 93: 26 (1971).Google Scholar
  23. 23.
    B. R. Velthuys, Binding of the inhibitor NH3 to the oxygen evolving apparatus of spinach chloroplasts, Biochim. Biophys. Acta 396: 392 (1975).CrossRefGoogle Scholar
  24. 24.
    T. Ono and Y. Inoue, S-state turnover in the O2 evolving system of CaCl2 washed Photosystem II particles depleted of three peripheral proteins as measured by thermoluminescence, Biochim. Biophys. Acta 806: 331 (1985).CrossRefGoogle Scholar
  25. 25.
    W. J. Coleman, I. C. Bainu, H. S. Gutowsky and Govindjee, The effect of chloride and other anions on the thermal inactivation of oxygen evolution in spinach thylakoids, in “Advances in Photosynthesis” Vol. I, I. C. Sybesma, ed., Martinus Nijhoff/Dr. W. Junk Publ. The Hague (1983).Google Scholar
  26. 26.
    M. Dixon and E. C. Webb, “Enzymes”, Longman Group Ltd., London.Google Scholar
  27. 27.
    J. D. Johnson, V. R. Pfister and P. H. Homann, Metastable proton pools in thylakoids and their importance for the stability of photo-system II, Biochim. Biophys. Acta 723: 256 (1983).CrossRefGoogle Scholar
  28. 28.
    W. J. Coleman and Govindjee, The role of chloride in oxygen evolution in “Proceedings of the 16th FEBS Congress”, VNU Science Press BV, Utrecht (1985).Google Scholar
  29. 29.
    N. Murata and M. Miyao, Organization of the photosynthetic oxygen evolving systems, in “The Oxygen Evolving System of Photosynthesis”, Y. Inoue et al, eds., Academic Press, Tokyo (1983).Google Scholar
  30. 30.
    R. J. P. Williams, Calcium chemistry and its relation to protein binding, in “Calcium Binding Proteins and Calcium-Function”, R. H. Wasserman et al, eds., North Holland, New York (1977).Google Scholar
  31. 31.
    P. R. Gorham and K. A. Clendenning, Anionic stimulation of the Hill reaction in isolated chloroplasts, Arch. Biochem. Biophys 37: 199 (1952).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Peter H. Homann
    • 1
  • Yorinao Inoue
    • 2
  1. 1.Institute of Molecular BiophysicsFlorida State UniversityTallahasseeUSA
  2. 2.Solar Energy Research GroupThe Institute of Physical and Chemical Research (RIKEN)Wako-shi, Saitama 351Japan

Personalised recommendations