Skip to main content

Abstract

Evidence from many laboratories over the last twenty years has firmly established the central role of proton translocation in energy transduction. The tenets of Peter Mitchell’slchemiosmotic theory are now almost universally accepted. The energization of solute transport, flagellar motion and oxidative phosphorylation in bacteria have been explained in chemiosmotic terms. The first requisite of the chemiosmotic theory is that the cell membrane must not be highly permeable to protons. Such relative impermeability permits the establishment of a protonmotive force due to the unequal distribution of protons on either side of the membrane. It is the tendency of protons to flow down their electrochemical gradient through specialized channels, such as the F0 of BF1F0 ATPase or proton-solute symporters, that drives ATP syn-thesis or solute uptake. Among the substantial evidence that proton translocation is essential to energy transduction is the effect of uncouplers of oxidative phosphorylation on membrane proton permeability.2,3 Acting as weak acids, classic uncouplers such as dinitrophenol and carbonylcyanide mchlorophenylhydrazone (CCCP) have been shown to dissipate the protonmotive force by permeabilizing membranes to protons. On the other hand, there have also been reports of uncoupler-binding entities within energy transducing membranes. 4–6

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Mitchell, Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism, Nature 191: 141 (1961).

    Article  Google Scholar 

  2. U. Hopfer, A.L. Lehninger, and T.E. Thompson, Protonic conductance across phospholiped bilayer membranes induced by uncoupling agents for oxidative phosphorylation, Proc. Natl. Acad. Sci. U.S.A. 59; 484 (1968).

    Article  CAS  Google Scholar 

  3. S.G.A. McLaughlin and J.P. Dilger, Transport of protons across membranes by weak acids, Physiol. Rev. 60: 825 (1980).

    CAS  Google Scholar 

  4. W. G. Hanstein, Uncoupling of oxidative phosphorylation, Biochim. Biophys Acta 456: 129 (1976).

    CAS  Google Scholar 

  5. W.G. Hanstein and Y. Hatefi, Characterization and localization of mito-chondrial uncoupler bindings sites with an uncoupler capable of photo-affinity labeling, J. Biol. Chem. 249: 1356 (1974).

    CAS  Google Scholar 

  6. N.V. Katre and D.F. Wilson, A specific uncoupler-binding protein in Tetrahymena pyriformis and Paracoccus denitrificans, Biochim. Biophys. Acta 593: 224 (1980).

    Article  CAS  Google Scholar 

  7. S.J. Decker and D.R. Lang, Mutants of Bacillus megaterium resistant to uncouplers of oxidative phosphorylation, J. Biol Chem. 252: 5936 (1977).

    CAS  Google Scholar 

  8. S.J. Decker and D.R. Lang, Membrane bioenergetic parameters in uncoupler-résistant mutants of Bacillus megaterium, J. Biol. Chem. 253: 6738 (1978).

    CAS  Google Scholar 

  9. M. Ito, Y. Ohnishi, S. Itoh, and M. Nishimura, Carbonyl cyanide-m-chlorophenyl hydrazone-resistant Escherichia coli mutant that exhibits a temperature-sensitive unc phenotype, J. Bacteriol. 153: 310 (1983).

    CAS  Google Scholar 

  10. A.A. Guffanti, H. Blumenfeld, and T.A. Krulwich, ATP Synthesis by an uncoupler-resistant mutant of Bacillus megaterium, J. Biol. Chem. 256: 8416 (1981).

    CAS  Google Scholar 

  11. E.G. Sedgwick, C. Hou, and P.D. Bragg, Effect of uncouplers on the bioenergetic properties of a carbonyl cyanide m-chlorophenylhydrazoneresistant mutant Escherichia coli UV6, Biochim. Biophys. Acta 767: 479 (1984).

    Article  CAS  Google Scholar 

  12. T. Date, C. Zwizinski, S. Ludmerer, and W. Wickner, Mechanism of membrane assembly: effects of energy poisons on the conversion of soluble M13 coliphage procoat to membrane-bound coat protein, Proc. N atl. Acad. Sci. U.S.A. 77: 827 (1980).

    Article  CAS  Google Scholar 

  13. P. Scholes and P. Mitchell, Acid-base titration across the plasma membrane of Micrococcus denitrificans: factors affecting the effective proton conductance and the respiratory rate, Bioenergetics 1: 61 (1970).

    Article  CAS  Google Scholar 

  14. P.C. Maloney, Membrane H+ conductance of Streptococcus lactis, J. Bacteriol. 140: 197 (1979).

    CAS  Google Scholar 

  15. A.A. Guffanti, R.T. Fuchs and T.A. Krulwich, Oxidative phosphorylation by isolated membrane vesicles from Bacillus megaterium and its uncoupler-resistant mutant derivative, J. Biol. Chem. 258: 35 (1983).

    CAS  Google Scholar 

  16. H.V. Westerhoff, B.A. Melandri, G. Venturoli, G.F. Azzone, and D.B. Kell, A minimal hypothesis for membrane-linked free-energy transduction, Biochim. Biophys. Acta 768: 257 (1984).

    CAS  Google Scholar 

  17. S. Ferguson, Fully delocalized chemiosmotic or localized proton flow pathways in energy coupling? A scrutiny of experimental evidence, Biochim. Biophys. Acta 811: 47 (1985).

    CAS  Google Scholar 

  18. H. Woelders, W.J. van der Zande, A.A.F. Colen, R.J.A.Wanders, and K. van Dam, The phosph te potential maintained by mitochondria in state 4 is proportional to the proton-motive force, FEBS Letts. 179: 278 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Guffanti, A.A. (1986). Bacterial Mutants Resistant to Uncouplers. In: Papageorgiou, G.C., Barber, J., Papa, S. (eds) Ion Interactions in Energy Transfer Biomembranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8410-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8410-6_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8412-0

  • Online ISBN: 978-1-4684-8410-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics