Effect of the Surface Potential on Membrane Enzymes and Transport

  • Lech Wojtczak


The surface charge of biological membranes is produced by dissociable groups of membrane constituents, mainly phospholipids and proteins. The surface potential (Ψo) is related to the surface charge density (6) according to the Gouy-Chapman equation which, when simplified for a symmetric electrolyte, is
$${{\varphi }_{o}}=\frac{2RT}{zF}\arcsin h\left[ 6{{\left( 8RT{{\varphi }_{o}}{{\varphi }_{r}}C \right)}^{-\frac{1}{2}}} \right]$$
where R is the gas constant, T is the absolute temperature, F is the Faraday constant, C denotes the concentration of the electrolyte, and z is its valency, ∈o is the permittivity of the vacuum, and ∈r is the relative permittivity (dielectric constant) of the medium. Because of electric attraction or repulsion, the concentration of ions in the immediate vicinity of the membrane surface (Co) is different from that in the bulk solution (C), as described by the Boltzmann distribution
$${{C}_{o}}={{C}_{\infty }}\exp \left( -zF{{\varphi }_{o}}/RT \right)$$


Surface Potential Phospholipid Composition Double Reciprocal Plot Adenine Nucleotide Translocation Acyl Coenzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Goldstein, Y. Levin, and E. Katchalski, A water-insoluble polyanionic derivative of trypsin. II. Effect of the polyelectrolyte carrier on the kinetic bahavior of the bound trypsin, Biochemistry, 3: 1913 (1964).CrossRefGoogle Scholar
  2. 2.
    E. Katchalski, I. Silman, and R. Goldman, Effect of the microenvironment on the mode of action of immoblilized enzymes, Adv. Enzymol., 34: 445 (1971).Google Scholar
  3. 3.
    D. H. Haynes, A fluorescent indicator of ion binding and electrostatic potential on the membrane surface, J. Membrane Biol., 17: 341 (1974).CrossRefGoogle Scholar
  4. 4.
    L. Wojtczak and M. J. NaIgcz, Surface charge of biological membranes as a possible regulator of membrane-bound enzymes, Eur. J. Biochem., 94: 99 (1979).CrossRefGoogle Scholar
  5. 5.
    K. S. Famulski, M. J. Nakgcz, and L. Wojtczak, Effect of the phosphorylation of microsomal proteins on the surface potential and enzyme activities, FEES Lett., 103: 260 (1979).CrossRefGoogle Scholar
  6. 6.
    K. S. Famulski, M. J. Nalecz, and L. Wojtczak, Phosphorylation of mitochondrial membrane proteins: Effect of the surface potential on monoamine oxidase, FEBS Lett., 157: 124 (1983).CrossRefGoogle Scholar
  7. 7.
    M. J. Nalecz, J. Zborowski, K. S. Famulski, and L. Wojtczak, Effect of phospholipid composition on the surface potential of liposomes and the activity of enzymes incorporated into liposomes, Eur. J. Biochem., 112: 75 (1980).CrossRefGoogle Scholar
  8. 8.
    L. Wojtczak, K. S. Famulski, M. J. Na/gcz, and J. Zborowski, Influence of the surface potential on the Michaelis constant of membrane-bound enzymes. Effect of membrane solubilization, FEES Lett., 139: 221 (1982).CrossRefGoogle Scholar
  9. 9.
    S. G. A. McLaughlin, G. Szabo, and G. Eisenman, Divalent ions and the surface potential of charged phospholipid membranes, J. Gen. Physiol., 58: 667 (1971).CrossRefGoogle Scholar
  10. 10.
    G. W. F. H. Borst-Pauwels, Ion transport in yeast, Biochim. Biophys. Acta, 650: 88 (1981).Google Scholar
  11. 11.
    A. P. R. Theuvenet and G, W. F. H. Borst-Pauwels, Effect of surface potential on Rb+ uptake in yeast. The effect of pH, Biochim. Biophys. Acta, 734: 62 (1983).CrossRefGoogle Scholar
  12. 12.
    L. Wojtczak and H. Za/uska, The inhibition of translocation of adenine nucleotides through mitochondrial membranes by oleate, Biochem. Biophys. Res. Commun., 28: 76 (1967).Google Scholar
  13. 13.
    L. Wojtczak, Effect of long-chain fatty acids and acyl-CoA on mitochondrial permeability, transport and energy-coupling processes, J. Bioenerg. Biomembr., 8: 293 (1976).Google Scholar
  14. 14.
    S. V. Pande and M. C. Blanchaer, Reversible inhibition of mitochondrial adenosine diphosphate phosphorylation by long chain acyl coenzyme A esters, J. Biol. Chem., 246: 402 (1971).Google Scholar
  15. 15.
    E. Lerner, A. I. Shug, and E. Shrago, Reversible inhibition of adenine nucleotide translocation by long chain fatty acyl coenzyme A esters in liver mitochondria of diabetic and hibernating animals, J. Biol. Chem., 247: 1513 (1972).Google Scholar
  16. 16.
    R. A. Harris, B. Farmer, and T. Ozawa, Inhibition of the mitochondrial adenine nucleotide transport system by oleyl CoA, Arch. Biochem. Biophys., 150: 199 (1972).CrossRefGoogle Scholar
  17. 17.
    M. L. Halperin, B. H. Robinson, and I. B. Fritz, Effect of palmitoyl CoA on citrate and malate transport by rat liver mitochondria, Biochemistry, 11: 949 (1972).CrossRefGoogle Scholar
  18. 18.
    F. Morel, G. Lauquin, J. Lunardi, J. Duszynski, and P. V. Vignais, An appraisal of the functional significance of the inhibitory effect of long chain acyl-CoA on mitochondrial transports, FEBS Lett., 39: 133 (1974).CrossRefGoogle Scholar
  19. 19.
    J. Duszynski and L. Wojtczak, Effect of detergents on ADP transport in mitochondria, FEBS Lett., 40: 72 (1974).CrossRefGoogle Scholar
  20. 20.
    H. Meisner, Inhibition of metabolite anion uptake in mitochondria by tetraphenylboron, Biochim. Biophys. Acta, 318: 383 (1973).CrossRefGoogle Scholar
  21. 21.
    J. Duszynski and L. Wojtczak, Effect of metal cations on the inhibition of adenine nucleotide translocation by acyl-CoA, FEBS Lett., 50: 74 (1975).CrossRefGoogle Scholar
  22. 22.
    L. Wojtczak, Effect of fatty acids and acyl-CoA on the permeability of mitochondrial membranes to monovalent cations, FEBS Lett., 44: 25 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Lech Wojtczak
    • 1
  1. 1.Nencki Institute of Experimental BiologyWarsawPoland

Personalised recommendations