Stacking of Purple Membranes in Vitro

  • Marcelle Lefort-Tran
  • Monique Pouphile
  • Bernard Arrio
  • Georges Johannin
  • Pierre Volfin
  • Lester Packer


Negative staining electron microscopy showed that purple membranes isolated from Halobacterium halobium are aggregated in vitro in the form of stacked arrays. This effect is more marked after trypsin treatment. White membranes isolated from mutant strains do not stack and exhibit an average size consistent with previous results of electron microscopy. White membrane fragments also do not exhibit stacking in vitro after retinal reconstitution or trypsin treatment. Quasi-elastic light scattering was also used to characterize the size (hydrodynamic radius) of isolated purple and white membranes before and after proteolysis. These results also show that native purple membrane preparations are larger in size than expected and that, following trypsin treatment, they are on average more than an order of magnitude larger. In stacked purple preparations, cations are unable to exchange freely with the aqueous medium. This explains why proteolysis lowers the efficiency of proton release by illuminated bacteriorhodopsin in purple membranes in vitro. Thus, previously reported decreases in efficiency of proton release by bacteriorhodopsin in proteolyzed purple membranes are due to the stacking effect and not per se to loss of the carboxyl terminus tail.


Hydrodynamic Radius Trypsin Treatment Purple Membrane Membrane Sheet Proton Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blaurock, A.E., Stoeckenius, W., Oesterhelt, D., and Scherphof, G.L. Sturcture of the cell envelope of Halobacterium halobium (1970) J. Cell. Biol. 71, 1–22.Google Scholar
  2. 2.
    Fisher, K., Yanagimoto, K., and Stoeckenius, W. Oriented absorption of purple membrane to cationic surfaces (1978) J. Cell Biol. 77, 611–621.Google Scholar
  3. 3.
    Fahr, A. and Bamburg, E. Photocurrents of dark-adapted bacteriorhodopsin on black lipid membranes (1982) FEBS Lett. 140, 251–253.Google Scholar
  4. 4.
    Kuschmitz, D. and Hess, B. On the ratio of the proton and photochemical cycles in bacteriorhodopsin (1981) Biochemistry 20, 5950–5957.CrossRefGoogle Scholar
  5. 5.
    Lozier, R.H., Niederberger, W., Bogomolni, R.N., Hwang, S., and Stoeckenius, W. Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments, Halobacterium halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane (1976) Biochim. Biophys. Acta, 440, 545–556.Google Scholar
  6. 6.
    Govindjee, R., Ebrey, T.G., and Crofts, A.R. The quantum efficiency of proton pumping by the purple membrane of Halobacterium halobium (1980) Biophys, J. 30, 231–242.Google Scholar
  7. 7.
    Govindjee, R., Ohno, K., and Ebrey, T.G. Effect of removal of the C-terminal region of bacteriorhodopsin on its light-induced H+ changes (1982) Biophys J. 38, 85–87.Google Scholar
  8. 8.
    Gerber, G.E., Wildenauer, D., Khorana, H.G. Orientation of bacteriorhodopsin generate a membrane potential (1977) Proc. Natl. Acad. Sci. USA 74, 5426–5430.Google Scholar
  9. 9.
    Ovchinnikov, Y.A., Abdulaev, N.G., Feigina, M.Y., Kiselev, A.V., and Lobanov, N.A. Recent findings in the structure-functional characteristics of bacteriorhodopsin (1977) FEBS Lett. 84, 104.Google Scholar
  10. 10.
    Liao, M.-J. and Khorana, H.G. Removal of the carboxyl-terminal peptide does not affect refolding or function of bacteriorhodopsin as a light dependent proton pump (1984) J. Biol. Chem. 259, 4194–4199.Google Scholar
  11. 11.
    Govindjee, R., Ohno, K., Chang, C.-H., and Ebrey, T.G. In: Transduction in Biological Membranes, New York: Plenum Press. In press.Google Scholar
  12. 12.
    Oesterhelt, D. and Stoeckenius, W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane (1974). In: Methods in Enzymology (S. Fleischer and L. Packer, eds.), Vol. 31, Academic Press, pp. 667–678.Google Scholar
  13. 13.
    Oesterhelt, D. Reconstitution of the retinal proteins bacteriorhodopsin and halorhodopsin (1982). In: Methods of Enzymology (L. Packer, ed.), Vol. 88, Academic Press, pp. 10–17.Google Scholar
  14. 14.
    Mukohata, Y., Sugiyama, Y., Kaji, Y., Usukura, J., and Yamada, E. The white membrane of crystalline bacteriorhodopsin in Halobacterium halobium strain R1mW and its conversion into purple membrane by exogenous retinal (1981) Photochem. Photobiol. 33, 593–600.Google Scholar
  15. 15.
    Katsura, T., Lam, E., Packer, L., and Seltzer, S. Light dependent modification of bacteriorhodopsin by tetranitromethane. Interaction of a tyrosine and a tryptophan residue with bound retinal (1982) Biochem. Internatl. 5, 445–456.Google Scholar
  16. 16.
    Scherrer, P., Packer, L., and Seltzer, S. Effect of iodination of purple membrane on the photocycle of bacteriorhodopsin (1981) Arch. Biochem. Biophys. 202, 589–601.Google Scholar
  17. 17.
    Ware, B.R. and Haas, D.D. Electrophoretic light scattering (1983) In: Fast Methods in Physical Biochemistry and Cell Biology (R.I. Sha’afi and S.M. Fernandez, eds. ), Elsevier Science Publishers, pp. 174–220.Google Scholar
  18. 18.
    Arrio, B., Johannin, G., Carrette, A., Chevallier, J., and Brethes, D. Electrokinetic and hydrodynamic properties of sarcoplasmic reticulum vesicles: a study by laser Doppler electrophoresis and quasi-elastic light scattering (1984) Arch. Biochem. Biophys. 288, 220–229.Google Scholar
  19. 19.
    Arrio, B., Johannin, G., Volfin, P., and Packer, L. Quasi-elastic laser light scattering and Doppler electrophoresis of purple membranes (1984) Biophys, Soc. Abstr. 45, 212a.Google Scholar
  20. 20.
    Haschemeyer, R.M. and Myers, R.J. (1972) In: Principles and Techniques of Electron Microscopy (M.A. Hayat, ed.), Vol. 2, Van Nostrand Reinhold Company, pp. 99–147.Google Scholar
  21. 21.
    Packer, L., Tristram, S., Herz, J., Russell, C., and Borders, C.L. Chemical modification of purple membranes: role of arginine and carboxylic acid residues in bacteriorhodopsin (1971) FEBS Lett. 108, 243248.Google Scholar
  22. 22.
    Wallace, B.A. and Henderson, R. Location of the carboxyl terminus of bacteriorhodopsin in purple membrane (1982) Biophys. J. 39, 233–239.Google Scholar
  23. 23.
    Walsh, K.A. Trypsinogens and trypsin of various species (1971) In: Methods in Enzymology (G.E. Perlmann and L. Lorand, eds.), Vol. 19, pp. 41–63.Google Scholar
  24. 24.
    Abdulaev, N., Feigina, M., Kiselov, A., Ovchinnikov, Y., Drachev, L., Kauger, A., Knitrina, L., and Skulachev, V. Products of limited proteolysis of bacteriorhodopsin generate a membrane potential (1978) FEBS Lett. 90, 190–194.Google Scholar
  25. 25.
    Ovchinnikov, Y.A. (1984) In: EMBO Workshop on Molecular Biology of Retinal Proteins.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Marcelle Lefort-Tran
    • 1
  • Monique Pouphile
    • 1
  • Bernard Arrio
    • 2
  • Georges Johannin
    • 2
  • Pierre Volfin
    • 2
  • Lester Packer
    • 3
  1. 1.Laboratoire de Cytophysiologie de la PhotosyntheseGif Sur YvetteFrance
  2. 2.Institut de Biochimie, Bat 432Universite de Paris XIOrsayFrance
  3. 3.Membrane Bioenergetics Group Applied Science Division, Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations