The Protonmotive Activity of Energy Transfer Proteins of Mitochondria

  • Sergio Papa


Proton flow represents a major device for energy transfer by membrane proteins. The molecular mechanism by which the protonmotive force is generated, transmitted and utilized is, however, matter of debate. The available knowledge supports the concept of Mitchell |1,2| that vectorial organization of primary protolytic reactions at the catalytic sites is central to energy transfer. The postulate |1| that vectoriality derives simply from anisotropic diffusion of the same chemical groups involved in primary catalysis doesn’t appear to be equally satisfactory |3|.


Proton Conduction Electron Flow Proton Translocation Submitochondrial Particle Thiol Reagent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Mitchell, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Glynn Research Bodmin, (1966).Google Scholar
  2. 2.
    P. Mitchell, Possible molecular mechanism of the protonmotive function of cytochrome system, J. Theor. Biol. 62: 327, (1976).CrossRefGoogle Scholar
  3. 3.
    S. Papa and M. Lorusso, The cytochrome chain of mitochondria: Electron transfer reactions and transmembrane proton translocation, in: “Biomembranes” R. M. Burton and F. Carcalho Guerra eds., Plenum Pub. Corp. N. Y. (1984).Google Scholar
  4. 4.
    S. Papa, Proton translocating reaction in the respiratory chain, Biochim. Biophys. Acta 456: 39, (1976).Google Scholar
  5. 5.
    S. Papa, Molecular mechanism of proton translocation by the cytochrome system and the ATPase of mitochondria. Role of proteins. J. Bioenerg. Biomembr. 14 /69, (1982).Google Scholar
  6. 6.
    J. Tittor, P. Hegemann and D. Oesterhelt, Retinal as a molecular switch in ion pumps, in: “Ion interactions in energy transport systems”, G. Papageorgiou, J. Barber, M. Karajannis, S. Papa eds., Plenum Publ. Corp. N. Y. (1985)Google Scholar
  7. 7.
    H. Tokuda, M. Sugasawa and T. Unemoto, Roles of Na+ and K+ in a-aminoisobutyric acid transport by the marine bacterium Vibrio alginolyticus, J. Biol. Chem. 257: 788, (1982)Google Scholar
  8. 8.
    S. Papa, M. Lorusso and F. Guerrieri, Mechanism of respiration driven proton translocation in the inner mitochondrial membrane. Analysis of proton translocation associated with oxidation of endogenous ubiquinol, Biochim. Biophys. Acta 387: 425, (1975)CrossRefGoogle Scholar
  9. 9.
    M. Wikström, K. Krab and M. Saraste, Proton-translocating cytochrome complexes, Ann. Rev. Biochem. 50: 623, (1981).CrossRefGoogle Scholar
  10. 10.
    P. Mitchell, Protonmotive cytochrome system of mitochondria, Ann. N. Y. Acad. Sci. 341: 564, (1980)CrossRefGoogle Scholar
  11. 11.
    S. Papa, F. Guerrieri and M. Lorusso, Mechanism of respiration-driven proton translocation in the inner mitochondrial membrane. Analysis of proton translocation associated to oxido-reductions of the oxygenterminal respiratory carriers, Biochim. Biophys. Acta 357: 181, (1974).CrossRefGoogle Scholar
  12. 12.
    S. Papa, Mechanism of active proton translocation of cytochrome systems, in: “Membranes and Transport” A. N. Martonosi ed. Plenum Publ. Corp. N. Y. (1982).Google Scholar
  13. 13.
    S. Papa, F. Guerrieri, M. Lorusso and S. Simone, Proton translocation and energy transduction in mitochondria, Biochimie 55: 703 (1973).CrossRefGoogle Scholar
  14. 14.
    G. Von Jagow, W. D. Engel and H. Schägger, On the mechanism of proton translocation linked to electron transfer at energy conversion site 2, in: “Vectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria”, F. Palmieri, E. Quagliariello, N. Siliprandi, E. C. Slater, eds. Elsevier/North Holland Biomedical Press, Amsterdam, (1981).Google Scholar
  15. 15.
    S. Papa, M. Lorusso, D. Boffoli and E. Bellomo, Redox-linked proton translocation in the b-c1 complex from beef-heart mitochondria reconstituted into phospholipid vesicles. General characteristics and control of electron flow by ApH+, Eur. J. Biochem. 137: 405 (1983).CrossRefGoogle Scholar
  16. 16.
    M. Wikström, and J. Berden, Oxidoreduction of cytochrome c in the presence of antimycin, Biochim. Biophys. Acta 283: 403, (1972).CrossRefGoogle Scholar
  17. 17.
    M. Lorusso, D. Gatti, D. Boffoli, E. Bellomo and S. Papa, Redox-linked proton translocation in the b-c1 complex from beef-heart mitochondria reconstituted into phospholipid vesicles. Studies with chemical modifiers of aminoacid residues, Eur J. Biochem. 137: 413 (1983).CrossRefGoogle Scholar
  18. 18.
    M. Lorusso, D. Gatti, M. Marzo and S. Papa, Effect of papain digestion on redox linked proton translocation in b-c1 complex of beef-heart reconstituted into liposomes, FEBS Lett. 182: 370 (1985).CrossRefGoogle Scholar
  19. 19.
    M. Degli Esposti, E. M. Meier, J. Timoneda and G. Lenaz, Modification of the catalytic function of the mitochondrial cytochrome b-c1 complex by dicyclohexylcarbodiimide,Biochim. Biophys. Acta 725: 349, (1983).CrossRefGoogle Scholar
  20. 20.
    G. Von Jagow, H. Schagger, W. D. Engel, P. Riccio, H. J. Kolb and M. Klingenberg, Complex III from beef-heart:Isolation by hydroxyapatite chromatography in Triton X-100 and characterization, in: Methods in Enzymology, Vol. 53, S. Fleischer and L. Packer eds.,Academic Press, New York,(1978).Google Scholar
  21. 21.
    S. Papa, F. Guerrieri, Proton conduction by H+-ATPase, in: “Chemiosmotic Proton Circuits in Biological Membranes” V. P. Skulachev and P. C. Hinkle eds. Addison-Wesley Publishing Company,Inc. Reading Mass,(1981).Google Scholar
  22. 22.
    P. Pedersen, M. Amzel, Proton ATPases:Structure and Mechanism, Ann. Rev. Biochem. 52: 801 (1983).CrossRefGoogle Scholar
  23. 23.
    W. Sebald, J. Hoppe and E. Wachter, Aminoacid sequence of the ATPase proteo-lipid from mitochondria,chloroplasts and bacteria(Wild type and mutants) in: “Function and Molecular Aspects of Biomembrane Transport” E. Quagliariello, F. Palmieri, S. Papa, M. Klingenberg eds., Elsevier/North Holland Biomedical Press, Amsterdam (1979).Google Scholar
  24. 24.
    J. Hoppe and W. Sebald, The proton conducting Fo-part of bacterial ATP synthases, Biochim. Biophys. Acta 768: 1 (1984)Google Scholar
  25. 25.
    S. Papa, F. Guerrieri, F. Zanotti and R. Scarfò, Flow and interactions of protons in the H+-ATPase of mitochondria, in: “Information and Energy transduction in biological membranes” C. L. Bolis, E. J. M. Helmereich, H. Passow, eds., Alan R. Liss, Inc. New York, (1984).Google Scholar
  26. 26.
    A. Pansini, F. Guerrieri and S. Papa, Control of proton conduction by the H-ATPase in the inner mitochondrial membrane, Eur. J. Biochem. 92: 45 (1978).Google Scholar
  27. 27.
    J. Kopecky, F. Guerrieri and S. Papa, Interaction of dicyclohexylcarbodiimide with the proton conducting pathway of mitochondrial H+-ATPase, Eur. J. Biochem. 131: 17 (1983)CrossRefGoogle Scholar
  28. 28.
    K. Brocklehurst and Little, G., Reactions of papain and low M. W. thiols with some aromatic disulphides. Biochm. J. 133: 67, (1973)Google Scholar
  29. 29.
    F. Guerrieri and S. Papa, Effect of chemical modifiers of aminoacid residues on proton conduction by the H+-ATPase of mitochondria, J. Bioenerg. Biomembr. 13: 393 (1981).CrossRefGoogle Scholar
  30. 30.
    R. Sanadi, Mitochondrial coupling Factor B, Biochim. Biophys. Acta, 683: 39 (1982).Google Scholar
  31. 31.
    F. Zanotti, F. Guerrieri, R. Scarfb, J. Berden and S. Papa, Effect of diamide on proton translocation by the mitochondrial H+-ATPase, in preparation.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Sergio Papa
    • 1
  1. 1.Institute of Medical Biochemistry and ChemistryUniversity of BariBariItaly

Personalised recommendations