Nonlinearity of the Flux/Force Relationship in Respiring Mitochondria as a Possible Consequence of Heterogeneity of Mitochondrial Preparations

  • Lech Wojtczak
  • Jerzy Duszyński
  • Małgorzata Puka
  • Anna Żółkiewska


It is well recognized since early studies on oxidative phosphorylation1,2 that ADP greatly stimulates mitochondrial respiration. This reflects a tight coupling between electron transport and ATP synthesis. Nevertheless, in the absence of added ADP or after its complete phosphory­lation to ATP, mitochondrial respiration does not come to a stop but continues at a low, though measurable, level designated as state 4 2 or the resting state. This respiration may be partly attributed to external ATPase and/or recycling of Ca2+. However, even if production of ATP or its exit from mitochondria is blocked and the uptake of Ca2+ is prevented, there still remains a significant oxygen uptake. In terms of the chemi­osmotic theory of energy coupling,3 this resting state respiration can be interpreted as compensating the proton leak through the inner mitochondrial membrane.


Mitochondrial Respiration Proton Leak Respiratory Control Ratio Carbonyl Cyanide Mitochondrial Preparation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Chance and G. R. Williams, Respiratory enzymes in oxidative phosphorylation. 1. Kinetics of oxygen utilization, J. Biol. Chem., 217: 383 (1955).Google Scholar
  2. 2.
    B. Chance and G. R. Williams, Respiratory enzymes in oxidative phosphorylation. 3. The steady state, J. Biol. Chem. 217: 409 (1955).Google Scholar
  3. 3.
    P. Mitchell, “Chemiosmotic Coupling and Energy Transduction,” Glynn Research Laboratory, Bodmin (1968).Google Scholar
  4. 4.
    D. G. Nicholls, The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat liver mitochondria as determined by ion distribution, Eur. J. Biochem., 50: 305 (1974).Google Scholar
  5. 5.
    J. Duszynski, K. Bogucka, and L. Wojtczak, Homeostasis of the proton-motive force in phosphorylating mitochondria, Biochim. Biophys. Acta, 767: 540 (1984).CrossRefGoogle Scholar
  6. 6.
    D. Pietrobon, M. Zoratti, G. F. Azzone, J. W. Stucki, and D. Walz, Non-equilibrium thermodynamic assessment of redox-driven.H+-pumps in mitochondria, Eur. J. Biochem, 127: 483 (1982).CrossRefGoogle Scholar
  7. 7.
    J. M. Tager, R. J. A. Wanders, A. K. Groen, W. Kunz, R. Bohnensack, U. Küster, G. Letko, G. Böhme, J. Duszynski, and L. Wojtczak, Control of mitochondrial respiration, FEBS Lett, 151: 1 (1983).CrossRefGoogle Scholar
  8. 8.
    J. Duszynski and L. Wojtczak, The apparent non-linearity of the relationship between the rate of respiration and the protonmotive force of mitochondria can be explained by heterogeneity of mitochondrial preparations, FEES Lett., 182: 243 (1985).CrossRefGoogle Scholar
  9. 9.
    R. Bohnensack, Control of energy transformation in mitochondria. Analysis by a quantitative model, Biochim. Biophys. Acta, 634: 203 (1981).CrossRefGoogle Scholar
  10. 10.
    M. Baltscheffsky, H. Baltscheffsky, and J. Boork, Evolutionary and mechanistic aspects on coupling and phosphorylation in photosynthetic bacteria, in: “Electron Transport and Photophosphorylation,” J. Barber, ed., Elsevier, Amsterdam (1982).Google Scholar
  11. 11.
    N. Kamo, M. Muratsugu, R. Hongoh, and Y. Kobatake, Membrane potential of mitochondria measured with an electrode sensitive to tetraphenylphosphonium, J. Membrane Biol, 49: 107 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Lech Wojtczak
    • 1
  • Jerzy Duszyński
    • 1
  • Małgorzata Puka
    • 1
  • Anna Żółkiewska
    • 1
  1. 1.Nencki Institute of Experimental BiologyWarsawPoland

Personalised recommendations