Advertisement

Origin of the Moon: Dynamical Considerations

  • Gordon J. F. MacDonald

Abstract

The Moon is a unique body in the solar system. Other planets have their satellites, but only the Earth possesses a satellite whose orbital angular momentum about its primary exceeds the rotational angular momentum of the primary. For all the other planets, the orbital angular momentum of their satellites is a small fraction of the rotational momentum of the planet. While there are other satellites more massive than the Moon, no other planet possesses a satellite whose mass is such a substantial fraction of the mass of the primary. These unique dynamical characteristics of the Moon have led to a wide diversity of theories regarding its origin, and today, as in past centuries, the Moon’s origin remains a matter of debate.

Keywords

Angular Momentum Orbital Element Giant Planet Earth Radius Tidal Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfvén, H. (1963), Icarus 1: 357.ADSCrossRefGoogle Scholar
  2. Alsop, L. E., Sutton, G. H. and Ewing, M. (1961), J. Geophys. Res. 66: 631.ADSCrossRefGoogle Scholar
  3. Bartels, J. (1957), “ Gezeitenkräfte,” in: S. Flügge (ed.), Handbuch der Physik 48: Springer-Verlage, Berlin.Google Scholar
  4. Benioff, H., Press, F. and Smith, S. (1961), J. Geophys. Res. 66: 605.ADSCrossRefGoogle Scholar
  5. Brouwer, D. and Clemence, G. M. (1961), Methods of Celestial Mechanics, Academic Press, New York and London.Google Scholar
  6. Cameron, A. G. W. (1963), Icarus 2: 249.ADSCrossRefGoogle Scholar
  7. Darwin, G. H. (1880), Phil. Trans. Roy. Soc. (London) 171, 713.MATHCrossRefGoogle Scholar
  8. Darwin, G. H. (1898), The Tides, Riverside Press, Cambridge.MATHGoogle Scholar
  9. Gerstenkorn, A. (1955) Z. Astrophys. 26: 245.MathSciNetADSGoogle Scholar
  10. Harrison, J. C., Ness, N. F., Longman, I. M., Forbes, R. F. S., Kraut, E. A. and Slichter, L. B. (1963), J. Geophys. Res. 68: 1497.ADSCrossRefGoogle Scholar
  11. Jeffreys, H. (1920), Phil. Trans. Roy. Soc. (London) Ser. A 221: 239.ADSCrossRefGoogle Scholar
  12. Jeffreys, H. (1930), Monthly Notices Roy. Astron. Soc. 91: 169.ADSMATHGoogle Scholar
  13. Jeffreys, H. (1959), The Earth, ed. 4, Cambridge University Press, London.Google Scholar
  14. Knopoff, L. and MacDonald, G. J. F. (1958), Rev. Mod. Phys. 30: 1178.MathSciNetADSCrossRefGoogle Scholar
  15. Knopoff, L. and MacDonald, G. J. F. (1960), J. Geophys. Res. 65: 2191.ADSCrossRefGoogle Scholar
  16. Lee, W. H. K. and MacDonald, G. J. F. (1963), J. Geophys. Res. 68: 6481.ADSGoogle Scholar
  17. MacDonald, G. J. F. (1959), J. Geophys. Res. 64: 1967.ADSCrossRefGoogle Scholar
  18. MacDonald, G. J. F. (1962), J. Geophys. Res. 67: 2945.ADSCrossRefGoogle Scholar
  19. MacDonald, G. J. F. (1963), Rev. Geophys. 1: 587.ADSCrossRefGoogle Scholar
  20. MacDonald, G. J. F. (1964a.), Rev. Geophys. 2: 467.ADSCrossRefGoogle Scholar
  21. MacDonald, G. J. F. (1964b.), Science 145: 881.ADSCrossRefGoogle Scholar
  22. Munk, W. H. and MacDonald, G. J. F. (1960), The Rotation of the Earth, Cambridge University Press, London.Google Scholar
  23. Ness, N. F., Harrison, J. C. and Slichter, L. B. (1961), J. Geophys. Res. 66: 621.ADSCrossRefGoogle Scholar
  24. Peselnick, L. and Outerbridge, W. F. (1961), J. Geophys. Res. 66: 581.ADSCrossRefGoogle Scholar
  25. Urey, H. C. (1963), in: D. P. Legalley (ed.) Space Science, John Wiley and Sons, New York.Google Scholar
  26. Walker, M. F. and Hardie, R. (1955), Publ. Astron. Soc. Pacific 67: 224.ADSCrossRefGoogle Scholar
  27. Wise, D. U. (1963), J. Geophys. Res. 68: 1547.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press 1966

Authors and Affiliations

  • Gordon J. F. MacDonald

There are no affiliations available

Personalised recommendations