Advertisement

The Problem of Stereospecificity

  • B. L. Erusalimskii
Part of the Macromolecular Compounds book series (MMCO)

Abstract

The creation of macromolecules which are distinguished by their high degree of structural regularity became part of the everyday practice of synthetic polymer chemistry due to the wide use of ionic initiating systems. Their variations allow the selective regulation of the structure of the majority of monomers which are capable of ionic polymerization. On the other hand, ionic processes which determine the strict homogeneity of the structure of macromolecules constitute only a tiny fraction of the total number of reactions of this type which have been studied. Essentially, in known cases of the formation of macromolecules in ionic systems, stereospecific polymerization is a comparatively rare exception. The mechanism of these and other processes may be regarded as having two aspects. These are the explanation of the factors which inhibit the stereoregulation and the evaluation of the nature of the factors which eliminate them. Regarding the first of these approaches we will note that the formation of active polymers still does not constitute evidence for the absence of stereospecific active sites in any given system. The same result can be brought about by the coexistence of certain active sites, not all of which are capable of forming stereoregular polymer chains.

Keywords

Anionic Polymerization Cationic Polymerization Growth Reaction Ionic Polymerization Model Active Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Cooper, “Stereospecific polymerization,” Progress in High Polymers, J. C.Robb and F. W.Peaker (editors), Vol. 1 (1961), pp. 279–340.Google Scholar
  2. 2.
    A. Zambelli and C. Tosi, “Stereochemistry of propylene polymerization,” Adv. Polym. Sci., 15, 31 (1974).Google Scholar
  3. 3.
    J. A. Licchellí, A. D. Caunt, R. N. Haward, and J. W. Parsons, “The polymerization of propylene using titanium-based catalysts by halogen-free magnesium alkyls,” IUPAC Symposium on Macromolecules, Florence (1980), Vol. 2, pp. 48–50.Google Scholar
  4. 4.
    Gy. Sârosi and A. Simon, “Some peculiarities of the MgC12supported catalyst systems for stereoregulation of propene polymerization,” IUPAC Symposium on Macromolecules, Florence (1980), Vol. 2, pp. 44–47.Google Scholar
  5. 5.
    S. Kvisie, 0. Nirinsen, and E. Rytter. Rytter, “Structural studies of the supported catalyst MgC12—TiCl,,—PhC00Et used for the polymerization of propene,” IUPAC Symposium on Macromolecules, Florence (1980), Vol. 2, pp. 32–35.Google Scholar
  6. 6.
    N. Gaylord and H. Mark, Linear and Stereoregular Additive Polymers, Interscience, New York (1959).Google Scholar
  7. 7.
    B. L. Erusalimskii, Wang Fo-Sung, and A. P. Kavunenko, “Investigation of the reaction of organomagnesium compounds with the salts of heavy metals and the use of organomagnesíum compounds and their complexes for polymerization,” J. Polym. Sci., 53, 27–32 (1961).Google Scholar
  8. 8.
    Y. Doi, E. Suzuki, and T. Keii, “Stereoregularities of polypropylenes obtained with highly active supported Ziegler—Natta catalyst sytems,” Makromol. Chem. Rapid Commun., 2, 293–297 (1981).Google Scholar
  9. 9.
    Y. Doi and T. Keii, “The stereoregulating ability of isotactic-specific sites in heterogeneous catalyst systems TiC13Al(C2H5)2X (X= C2H5, Cl, Br, or I) for propene polymerization,” Makromol. Chem., 170, 2117–2119 (1978).Google Scholar
  10. 10.
    U. Giannini, “Polymerization of olefins with high-activity catalysts,” Makromol. Chem. Suppl., 5, 216–229 (1981).Google Scholar
  11. 11.
    P. Galli, L. Luciani, and G. Cechin, “Advances in the polymerization of olefins with coordination catalysts,” Angew. Makromol. Chem., 94, 63–89 (1981).Google Scholar
  12. 12.
    J. P. Kennedy and A. W. Langer, Jr., “Recent advances in cationic polymerization,” Adv. Polym. Sci., 3, 508–580 (1964).Google Scholar
  13. 13.
    G. Ferraris, C. Corno, A. Priola, and S. Cesca, “On the cattionic polymerization of olefins and the structure of the polymers, 3. Polypropylene,” Macromolecules, 13, 1104–1110 (1980).Google Scholar
  14. 14.
    C. Corno, G. Ferraris, A. Priola, and S. Cesca, “On the cationic polymerization of olefins and the structure of the polymers, 2. Poly-l-butene,” Macromolecules, 12, 404–411 (1979).Google Scholar
  15. 15.
    A. Priola, C. Corno, and S. Cesca, “On the polymerization of olefins and the structure of polymers, 4. 1-Butene selectively 13C-enriched in positions 3 and 4,” Macromolecules, 13, 11101114 (1980).Google Scholar
  16. 16.
    J. Boor, Jr., “Ziegler—Natta Catalysts and Polymerizations, Academic Press, New York (1979).Google Scholar
  17. 17.
    P. Corradini, G. Guerra, R. Fusco, and V. Barone, “Steric effects and stereospecifio polymerization on Ziegler—Natta heterogeneous catalysts,” IUPAC Symposium on Macromolecules, Florence (1980), Vol. 2, pp. 1–4.Google Scholar
  18. 18.
    R. Zanetti, G. Guidetti, D. Ajo, and A. Martorana,“Polymorphism of TíCl, and the structural disorder in the a-form,” IUPAC Symposium on Macromolecules, Florence (1980), Vol. 2, pp. 5–8Google Scholar
  19. 19.
    L. Locatelli, M. C. Sacchi, E. Rigamonti, and A. Zambelli, “Stereospecific polymerization of propene. Some evidence for monomer insertion on a-metal—carbon bond,” IUPAC Symposium on Macromolecules, Florence (1980), Vol. 2, pp. 28–31.Google Scholar
  20. 20.
    Y. Doi, “Structure and chemistry of atactic polypropylenes. Statistical model of chain propagation,” Makromol. Chem. Rapid Commun., 3, 653–641 (1982).Google Scholar
  21. 21.
    K. H. Reichert, “Mechanismus der Olefinpolymerisation mit Ubergangsmetallkatalysatoren,” Angew. Makromol. Chem., 94, 1–23 (1981).Google Scholar
  22. 22.
    B. L. Erusalimskii, “Uber einige Besonderheiten der anionischen Polymerization polarer Monomerer,” Plaste Kautsch., 15, 788–792 (1968).Google Scholar
  23. 23.
    T. Uryu, T. Seki, T. Kawamura, A. Funamoto, and K. Matsuzaki, “Synthesis of polystyrenes with different stereoregularities by anionic polymerization,” J. Polym. Sci., Polym. Chem. Ed., 14, 3035–3044 (1976).Google Scholar
  24. 24.
    T. Uryu, T. Kawamura, and K. Matsuzaki, “The stereoregularities of polystyrene obtained by different ion pairs of polystyryl alkali salts,” J. Polym. Sci., Polym. Chem. Ed., 17, 2019–2029 (1979).Google Scholar
  25. 25.
    T. Kawamura, T. Uryu, and K. Matsuzaki, “Analysis of isotactic polystyrenes obtained with butyllithium and olefin catalysts by carbon-13 nuclear magnetic resonance spectroscopy,” Makromol. Chem., 180, 2001–2008 (1979).Google Scholar
  26. 26.
    T. Kawamura, T. Uryu, and K. Matsuzaki, “Stereoregularity of polystyrene derivatives, 2. Poly(methoxystyrene)s obtained by anionic catalysts,” Makromol. Chem., 183, 143–151 (1982).Google Scholar
  27. 27.
    T. Kawamura, T. Uryu, and K. Matsuzaki, “Stereoregularity of polystyrene derivatives, 3. Poly(methylstyrene)s obtained by anionic catalysts,” Makromol. Chem., 183, 153–162 (1982).Google Scholar
  28. 28.
    K. Matsuzaki, Y. Shinohara, and T. Kanai, “Nuclear magnetic resonance studies on polymer carbanions. 1. Living polystyrene and its model compounds,” Makromol.•Chem., 181, 1923–1934 (1980).Google Scholar
  29. 29.
    J. Dils and M. van Beylen, “Penultimate unit effects in anionic polymerization. The anionic polymerization of 1,1-diphenylalkali salts with styrene,” Int. Symp. on Macromolecules, Dublin (1977), 1, pp. 69–76.Google Scholar
  30. 30.
    E. Walckiers and M. van Beylen, “Penultimate effect in anionic polymerization of styrene,” Int. Symp. on Macromolecules, Boston (1977), Vol. 2, pp. 1199–1206.Google Scholar
  31. 31.
    R. Wicker and K. F. Elgert, “Zur Taktizität von Poly-a-methylstyrol, 4. Das 111- and 13C-NMR-Spektrum des 1,3,3-Trimethyl1-phenylbutyllithiums,” Makromol. Chem., 178, 3063–3073 (1977).Google Scholar
  32. 32.
    R. Wicker and K. F. Elgert, “Zur Taktizität von Poly-a-methylstyrol, 5. Die Abhängigkeit der Taktizität von der Reaktionstemperatur and der Anfangsmonomerkonzentration,” Makromol. Chem., 178, 3075–3084 (1977).Google Scholar
  33. 33.
    R. Wicker and K. F. Elgert, “Zur Taktizität von Poly-a-methylstyrol, 6. Zum stereoreguleierenden Mechanismus der Polyreaktion des a-Methylstyrols mit Butyllithium in Tetrahydrofuran,” Makromol. Chem., 178, 3085–3099 (1977).Google Scholar
  34. 34.
    S. L. Malhotra, “Polymerization of a-methylstyrene in tetrahydrofuran with potassium as initiator, V. NMR analysis of the reaction products,” J. Macromol. Sci., Chem., Al2, 73–101 (1978).Google Scholar
  35. 35.
    S. L. Malhotra, “Polymerization of a-methylstyrene in p-dioxane and cyclohexane. VI. NMR analysis of the reaction products,” J. Macromol. Sci., Chem., Al2, 883–908 (1978).Google Scholar
  36. 36.
    S. L. Malhotra, “Anionic polymerization of a-methylstyrene. IX. Nature of propagating species,” J. Macromol. Sci., Chem., A15, 533–552 (1981).Google Scholar
  37. 37.
    K. Matsuzaki, T. Iwamoto, and T. Kanai, “Nuclear magnetic resonance studies on polymer carbanions, 3. Model compounds for poly(o-methoxystyryl) and poly(o-methylstyryl) carbanions,” Makromol. Chem. Rapid Commun., 2, 187–192 (1981).Google Scholar
  38. 38.
    K. Matsuzaki, Y. Shinohara, and T. Kanaí, “Nuclear magnetic resonance studies on polymer carbanions, 2. Model compounds for a-methylstyrene and p-methylstyrene tetramer dianions,” Makromol. Chem., 182, 1533–1540 (1981).Google Scholar
  39. 39.
    J. C. Favíer, “Regularities of polv-p-isopropyl-a-methylstyrene,” Polymer, 23, 1501–1507 (1982).Google Scholar
  40. 40.
    P. v. R. Schleyer, J. D. Hill, J. A. Pople, and W. J. Hehre, “Geometrical preferences of the crotyl anion, radical, and cation,” Tetrahedron, 333, 2497–2501 (1977).Google Scholar
  41. 41.
    H. Yuki and K. Hatada, “Stereospecific polymerization of a-substituted acrylic acid esters,” Adv.Polym Sci., 31, 1–45 (1979).Google Scholar
  42. 42.
    B. L. Erusalimskii (Erussalimsky), B. G. Belen’kii (Belenkii), A. A. Davidyan (Davidjan), V. D. Krasikov, V. V. Nesterov, N. I. Nikolaev, V. N. Zgonnik, and V. M. Sergutin, “Subcatalytic effects in anionic polymerization processes,” 27th Int. Symp. on Macromolecules, Strasburg (1981), Vol. 1, pp. 182–185.Google Scholar
  43. 43.
    M. Tomoi, K. Sekiya, and H. Kaliuchi, “Anionic polymerization of methyl methacrylate by alkali metal alkoxides,” Polym. J., 6, 438–444 (1974).Google Scholar
  44. 44.
    P. E. M. Allen and B. O. Bateup, “Kinetics of the polymerization of •ethyl methacrylate initiated by butylmagnesium bromides at. dibutylmagnesium in tetrahydrofuran + toluene,” J. Chem. S(2. Faraday Trans., I, 71, 2203–2212 (1977).Google Scholar
  45. 45.
    Y. Okamoto, K. Urakawa, and H. Yuki, “Stereospecific polymerization of methacrylates with ethylmagnesium alkoxides,” Polym. J., 10, 457–464 (1978).Google Scholar
  46. 46.
    Yu. E. Eizner and B. L. Erusalimskii, The Electronic Aspect of Polymerization Reactions [in Russian], Nauka, Leningrad (1976).Google Scholar
  47. 47.
    V. N. Zgonnik, E. Yu. Melenevskaya, and B. L. Erusalimskii, “The study of active centers in anionic polymerization using spectroscopic and quantum chemical methods,” Usp. Khim., 47, 1479–1503 (1978).Google Scholar
  48. 48.
    P. E. M. Allen and B. O. Bateup, “Kinetics of the polymerization of methyl methacrylate initiated by organometallic compounds. VIII. Initiation by n-, i-, s-, or t-butyl magnesium compounds. Evidence for an eníeidic pseudoanionic mechanism,” Eur. Polym. J., 13, 761–768 (1977).Google Scholar
  49. 49.
    B. O. Bateup and P. E. M. Allen, “Polymerization of methyl methacrylate by organometallic compunds. VII. The n-butylmagnesium bromide—di-n-butylmagnesium system in THE + toluene solution,” Eur. Polym. J., 13, 762–768 (1977).Google Scholar
  50. 50.
    P. E. M. Allen, “Active centers for the stereospecific polymerization of methyl methacrylate by organomagnesium compounds,” J. Macromol. Sci., Chem., A14, 11–21 (1980).Google Scholar
  51. 51.
    P. E. M. Allen, M. C. Fisher, C. Mair, and E. H. Williams, “Polymerization of methyl methacrylate initiated by t-butyl and phenylmagnesium compounds. Factors influencing the nature of the active centers,” ACS Symposium Series 166, J. E. McGrath (editor), 185–197 (1981).Google Scholar
  52. 52.
    P. E. M. Allen, C. Mair, M. C. Fisher, and E. H. Williams, “Some problems concerning the mechanism of the isotactic polymerization of methyl methacrylate initiated by organometallic compounds in toluene solution. Application of modified dilatometer and NMR method,” J. Macromol. Sci., Chem., A17, 6167 (1982).Google Scholar
  53. 53.
    W. E. Lindsell, F. C. Robertson, I. Sontar, and V. H. Richards, “Polymerization by alkaline earth metal compounds. I. Studies on the polymerization of methyl methacrylate by triphenylmethyl derivatives and related compounds of calcium, strontium, and barium,” Eur. Polym. J., 17, 107–113 (1981).Google Scholar
  54. 54.
    J. Kawak, Q. T. Pham, C. Pillot, and J. P. Pascault, “Polymérisation anionique du méthacrylate de méthyle par les organo-alcalins. II. Polymérisation en milieu solvent aprotonique et l’effet de la température sur la tacticité des polymères, Eur. Polym. J., 10, 997–1003 (1974).Google Scholar
  55. 55.
    J. P. Pascault, J. Kawak, J. Gole, and Q. T. Pham, “Polymérisation du méthacrylate de méthyle par les organoalcalins. III. Polymérisation en milieu solvent aprotonique, études des tacticités,” Eur. Polym. J., 10, 1007–1114 (1974).Google Scholar
  56. 56.
    R. Pétiaud, P. Ciaudy, and Q. T. Pham, “Polymérisation du méthacrylate de méthyle par le chlorure de tertio-butyle-magnésium en solution dans le tétrahydrofuranne. I. Etude de l’équilibre de dissociation du chlorure de tertio-butyle-magnésium,” Polym. J., 12, 441–447 (1976).Google Scholar
  57. 57.
    R. Pétiaud and Q. T. Pham, “Polymérisation du méthacrylate de méthyle par le chlorure de tertio-butyle-magnésium en solution dans le tétrahydrofuranne, II. Comportement de la polymérisation en fonction de la température et de la composition magnesienne,” Eur. Polym. J., 12, 449–452 (1976).Google Scholar
  58. 58.
    R. Pétiaud and Q. T. Pham, “Polymérisation du méthacrylate de méthyle par le chlorure de tertio-butyle magnésium en solution dans le tétrahydrofuranne, III. Paramètres thermodynamiques des propagation iso-et syndiotactique en fonction de la composition magnesiennes, Eur. Polym. J., 12, 455–461 (1976).Google Scholar
  59. 59.
    A. H. E. Müller, E. Höcker, and G. V. Schulz, “Rate constants in the anionic polymerization of methyl methacrylate in tetrahydrofuran with cesium as counterion,” Macromolecules, 10, 1086–1089 (1977).Google Scholar
  60. 60.
    V. Warzelhan, H. Höcker, and G. V. Schulz, “The anionic polymerization of methyl methacrylate with a bifunctional initiator,” Makromol. Chem., 181, 149–163 (1980).Google Scholar
  61. 61.
    A. H. E. Müller, “The present view of the anionic polymerization of methyl methacrylate and related esters in polar solvents,” ACS Symposium Series 166, J. E. McGrath (editor), 441461 (1981).Google Scholar
  62. 62.
    L. Lochman, R. L. De, J. Janca, and J. Trekoval, “Some organo-lithium compounds as initiators of the anionic polymerization of methyl methacrylate,” Collect. Czech. Chem. Commun., 45, 2761–2765 (1980).Google Scholar
  63. 63.
    V. N. Krasulina, A. S. Khachaturov, N. V. Mikhailova, and B.L. Erusalimskii, “On the mechanism of stereoregulation in the anionic polymerization of polar monomers,” Vysokomol. Soedin., 12, 303–307 (1970).Google Scholar
  64. 64.
    K. Hatada, H. Sugino, H. Ise, T. Kitayama, Y. Okamoto, and H. Yuki, “Heterotactic polymers of a-substituted acrylic acid esters,” Polym. J., 12, 55–62 (1980).Google Scholar
  65. 65.
    Y. Okamoto, K. Ohta, K. Hatada, and H. Yuki, “Anionic polymerization of triphenylmethyl methacrylate,” ACS Symposium Series 166, J. L. McGrath (editor), 353–365 (1981).Google Scholar
  66. 66.
    G. R. Dewer, F. E. Karasz, W. J. McKnight, and R. W. Lenz, “Poly(alkylchloroacrylates). V. Preparation and properties of methyl, ethyl, and i-propyl polymers of varied tacticity,” J. Polym. Sci., Chem. Ed., 13, 2151–2179 (1975).Google Scholar
  67. 67.
    A. Soum and M. Fontanille, “Living anionic stereospecific polymerization of 2-vinylpyridine, 1. Initiation of polymerization and stereoregularity of polymers,” Makromol. Chem., 181, 799–808 (1980).Google Scholar
  68. 68.
    A. Soum and M. Fontanille, “Living anionic stereospecific polymerization of 2-vinylpyridine, 2. Kinetics of polymerization and nature of active centers,” Makromol. Chem., 182, 1743–1750 (1981).Google Scholar
  69. 69.
    A. Soum and M. Fontanille, “Living anionic stereospecific polymerization of 2-vinylpyridine, 3. Structure of active centers and mechanism of polymerization,” Makromol. Chem., 183, 1145–1159 (1982).Google Scholar
  70. 70.
    T. E. Hogen-Esch, W. L. Jenkins, C. F. Tien, and R. Smith, “Ion pair structure and stereochemistry in anionic oligomerization of some vinyl monomers,” Polym. Prepr., 21, 13–14 (1980).Google Scholar
  71. 71.
    T. E. Hogen-Esch and C. F. Tien, “Oligomerization stereochemistry of vinyl monomers, 7. Diastereomeric ion pairs as intermediates in stereoregular anionic oligomerization of 2-vinylpyridines. A proposed mechanism,” Macromolecules, 13, 207–216 (1960).Google Scholar
  72. 72.
    C. S. Huang, C. Mathis, and T. E. Hogen-Esch, “Oligomerizaof vinyl monomers, 9. 13C-NMR and chromatographic studies of oligomers of 2-vinylpyridine,” Macromolecules, 14, 1802–1807 (1981).Google Scholar
  73. 73.
    T. E. Hogen-Esch and W. L. Jenkins, “NMR and conductometric studies of 2-pyridyl-substituted carbanions, 2. Effect of cation size and coordination,” J. Am. Chem. Soc., 103, 3666–3672 (1981).Google Scholar
  74. 74.
    W. F. Jenkins, C. F. Tien, and T. E. Hogen-Esch, “Oligomerization stereochemistry of vinyl polymers, IV. Ion pair structure and 13-carbon stereochemistry in anionic oligomerization of 2-vinyl pyridine,” J. Polym. Sci., B16, 501–506 (1978).Google Scholar
  75. 75.
    C. J. Chang, F. F. Kiesel, and T. E. Hogen-Esch, “Ultraviolet spectroscopic and conductometric studies of pyridine-type carbanions,” J. Am. Chem. Soc., 97, 2805–2810 (1975).Google Scholar
  76. 76.
    C. Mathis and T. E. Hogen-Esch, “Evidence for a conformation-ally restrained six-membered ring containing lithium ion,” J. Am. Chem. Soc., 104, 634–635 (1982).Google Scholar
  77. 77.
    C. E. Schildknecht, “Vinyl ether stereoregulated polymerization,” High Polym., C. E. Schildknecht and I. Skeists (editors), 29, 325–329 (1977).Google Scholar
  78. 78.
    T. Kunitake and C. Aso, “A proposal on the steric course of propagation in the homogeneous cationic polymerization of vinyl and related ethers,” J. Polym. Sci., Part Al, 8, 665–678 (1970).Google Scholar
  79. 79.
    T. Kunitake and K. Takarabe, “The counterion effect on the steric course of the cationic polymerization of tert-butyl vinyl ether, Makromol. Chem., 182, 817–824 (1981).Google Scholar
  80. 80.
    K. Matsuzaki, M. Hamada, and K. Arita, “Stereoregularity of poly(vinyl ether),” J. Polym. Sci., Part Al, 5, 1233–1243 (1967).Google Scholar
  81. 81.
    H. Yuki, K. Hatada, K. Ohta, I. Kinoshita, S. Y. Murahashi, K. Ono, and Y. Ito, “Stereospecific polymerization of benzyl vinyl ether by BF3.0Et2,” J. Polym. Sci., Part Al, 7, 1517–1536 (1969).Google Scholar
  82. 82.
    H. Yuki, K. Hatada, K. Ohta, and T. Sazaki, “Stereospecific polymerization of allyl vinyl ether by BF3.0Et2,” Bull. Soc. Chem. Japan, 43, 890–897 (1970).Google Scholar
  83. 83.
    D. J. Sikkema and H. Angad-Gaur, “Isotactic poly(allyl vinyl ether), 1. A study of the polymerization and a proposal of a mechanism of stereocontrol,” Makromol. Chem., 181 2259–2266 (1980).Google Scholar
  84. 84.
    H. Angad-Gaur and D.J. Sikkema, “Isotactic poly(allyl vinyl ether), 2. An NMR study of stereoregularity and relaxation times,” Makromol. Chem., 181, 2385–2393 (1980).Google Scholar
  85. 85.
    F. Heublein, “The role of monomer solvation and counterion complexation in the cationic polymerization of vinyl monomers,” J. Macromol. Sci., Chem., A16, 563–577 (1981).Google Scholar
  86. 86.
    Yu. E. Eizner, S. S. Skorokhodov (Skorochodov), and T. P. Zubova. Zubova, “Electron-density distribution in unsaturated ethers and esters and their reactivity in cationic polymerization,” Eur. Polym. J., 7, 869–878 (1971).Google Scholar
  87. 87.
    Yu. E. Eizner and B. L. Erusalimskii, The Electronic Aspect of Polymerization Reactions [in Russian], Leningrad (1976), p. 81.Google Scholar
  88. 88.
    Y. Imanishi, Transfer Reactions in Cationic Polymerization, Kyoto University, Kyoto (1964), pp. 234–240.Google Scholar
  89. 89.
    B. A. Dolgoplosk, Diene Polymerization I [in Russian], Moscow (1972), pp. 697–714.Google Scholar
  90. 90.
    A. Priola, N. Passerini, M. Bruzzone, and S. Cesca, “Cationic cyclization of cis-1,4-polybutadiene. II. Physicochemical characteriziation of the polymer,” Angew. Makromol. Chem., 88, 21–35 (1980).Google Scholar
  91. 91.
    C. Corno, A. Priola, and S. Cesca, “Cationic copolymerization of isobutylene, 6. NMR investigation of the structure and sequences of isobutylene-2,3-dimethylbutadiene copolymers,” Macromolecules. 15, 840–844 (1982).Google Scholar
  92. 92.
    C. Corno, A. Priola, and S. Cesca, “Cationic copolymers of isobutylene. 1. Nuclear magnetic resonance investigation of the structure and monomer distribution on isobutylene-butadiene copolymers,” Macromolecules, 12, 411–418 (1979).Google Scholar
  93. 93.
    C. Corno, A. Proni, A. Priola, and S. Cesca, “Cationic copolymerization of isobutylene, 2. Nuclear magnetic resonance investigation of the structure of the isobutylene-isoprene copolymers,” Macromolecules, 13, 1092–1099 (1980).Google Scholar
  94. 94.
    W. Gebert, J. Hinz, and H. Sinn, “Umlagerungen bei der durch Lithiumbutyl initiierten Polyreaktion der Diene Isopren and Butadiene,” Makromol. Chem., 144, 97–115 (1971).Google Scholar
  95. 95.
    A. Kh. Bagdasar’yan, B. A. Dolgoplosk, and V. M. Frolov, “The stereoregulating mechanism in the polymerization of dienes in anionic systems,” Vysokomol. Soedin., All, 2191–2196 (1969).Google Scholar
  96. 96.
    D. J. Worsfold and S. Bywater, “Lithium alkyl-initiated polymerization of isoprene. Effect of cis-trans isomerization of organolithium compounds on the polymer microstructure,” Macromolecules, 11, 582–586 (1978).Google Scholar
  97. 97.
    M. Schlosser and J. Hartmann, “2-Alkenyl anions and their surprising endo preference. Facile and extreme stereocontrol over carbon-carbon linking reactions with allyl-type organometallics,” J. Am. Chem. Soc., 98, 4674–4676 (1976).Google Scholar
  98. 98.
    J. Sledz, F. Shue, B. Kaempf, and S. Libs, “Etude de la Microstructure des oligoméres desactivés du butadiène-1,3, Eur. Polym. J., 10, 1207–1215 (1974).Google Scholar
  99. 99.
    S. B. Texeira-Barriera, R. Mechin, and C. Tanielian, “Etude de la structure des oligomères de l’isoprène desactivés par les halogénures d’alcoyle,” Eur. Polym. J., 15, 677–683 (1979).Google Scholar
  100. 100.
    A. Garton and S. Bywater, “Anionic polymerization of butadiene in tetraahydrofuran. I. Isomerization of polybutadienyl salts,” Macromolecules, 8, 694–697 (1975).Google Scholar
  101. 101.
    A. Garton and S. Bywater, “Anionic polymerization of butadiene in tetrahydrofuran. II. Ion-pair propagation rate,” Macromolecules, 8, 697–700 (1975).Google Scholar
  102. 102.
    S. Bywater, D. J. Worsfold, and G. Hollingworth, “Structure of oligomeric polybutadienyllithium and polybutadiene,” Macromolecules, 5, 389–393 (1972).Google Scholar
  103. 103.
    V. N. Zgonnik, N. I. Nikolaev, E. Yu. Shadrina, and L. V. Nikovna, “Copolymerization of butadiene with styrene on butyl-lithium complexes with tetramethylethylenediamine and 2,3-dimethoxybutane,” Vysokomol. Soedin., B15, 684–686 (1973).Google Scholar
  104. 104.
    R. Ohlinger and F. Bandermann, “Kinetics of the propagation reaction of butadiene—styrene copolymerization with organolithium compounds,” Makromol. Chem., 181, 1935–1947 (1980).Google Scholar
  105. 105.
    E. Yu. Melenevskaya, V. N. Zgonnik, E. R. Dolinskaya, and B. L. Erusalimskii (Erussalimsky). Erusalimskii (Erussalimsky), “Structurelle Effekte in Systemen MnLi—Butadien—Styrol,” Makromol. Chem., 179, 27592764 (1978).Google Scholar
  106. 106.
    A. Essel, R. Salle, and Q. T. Pham, “Polymérisation anionique des diènes. IV. Contribution aux études des méchanismes de propagation stereospecifique des isoprene et butadiene par les organo-alcalins,” J. Polym. Sci., Polym.Chem. Ed., 13, 1869–1877 (1975).Google Scholar
  107. 107.
    R. Salle and Q. T. Pham, “Polymérisation des diènes. VI. Microstructure des polybutadiene et polyisoprène par resonance magnétique protonique à 250 MHz et méchanismes de propagation,” J. Polym. Sci., Polym. Chem. Ed., 15, 1799–1810 (1977).Google Scholar
  108. 108.
    R. Salle, “Contribution à l’étude des méchanismes de propagation anionique des diènes par les pairs d’ions en contact et les ions libres,” Thesis, Lyon (1976).Google Scholar
  109. 109.
    C. J. Dyball, D. J. Worsfold, and S. Bywater, “Anionic polymerization of isoprene in diethyl ether,” Macromolecules, 12, 819–822 (1979).Google Scholar
  110. 110.
    L. E. Forman, Elastomers from catalysts of alkali metals, in: High Polym., J. P. Kennedy and E. G. M. Törnquist (editors), Part 2, 23 (1969), pp. 491–596.Google Scholar
  111. 111.
    V. N. Zgonnik, N. I. Nikolaev, L. V. Vinogradova, N. S. Dimitrieva, K. K. Kalnin’sh, A. P. Koroleva, N. V. Smirnova, E. Yu. Shadrina, and V. M. Borodulina, “Effect of the nature of complexes of organolithium compounds with electron donors on the kinetics of butadiene polymerization and the polymer structure,” 5th Int. Conf. Organomet. Chem., 1, 549–550, Moscow (1971).Google Scholar
  112. 112.
    B. L. Erusalimskii, “Unresolved problem in ionic polymerization,” in: Advances in Ionic Polymerization Lin Russian], Z. Jedlinski (editor), Warsaw (1975), pp. 9–23.Google Scholar
  113. 113.
    A. F. Halasa, D. F. Lohr, and E. Hall, “Anionic polymerization to high vinyl polybutadiene,” J. Polym. Sci., Polym. Chem. Ed., 19, 1357–1360 (1981).Google Scholar
  114. 114.
    D. J. Worsfold, S. Bywater, F. Shué, J. Sledz, and V. Marti-Collet, “1,2-Dipiperidinoethane as a complexing agent in the anionic polymerization of butadiene and isoprene,” Makromol. Chem. Rapid Commun., 3, 239–242 (1982).Google Scholar
  115. 115.
    L. V. Vinogradova, N. I. Nikolaev, and V. N. Zgonnik, “The nature and reactivity of the active centers in the system butadiene—n-butyllithium—tetramethylethylenediamine—hydrocarbon medium,” Vysokomol. Soedin., A18, 1756–1761 (1976).Google Scholar
  116. 116.
    T. Suzuki, Y. Tsuji, and Y. Takegami, “Microstructure of poly(1-phenylbutadiene) prepared by anionic initiators,” Macromolecules, 11, 639–644 (1978).Google Scholar
  117. 117.
    T. Suzuki, Y. Tsuji, Y. Takegami, and H. J. Harwood, “Microstructure of poly(2-phenylbutadiene) prepared by anionic initiatiors,” Macromolecules, 12, 234–239 (1979).Google Scholar
  118. 118.
    T. Suzuki, Y. Tsuji, Y. Watanabe, and Y. Takegami, “Characterization of the living anion chain end of oligomeric 1-phenyl1,3-butadienyllithium,” Polym. J., 11, 651–660- (1979).Google Scholar
  119. 119.
    T. Suzuki, T. Tsuji, Y. Watanabe, and T. Takegami, “Characterization of the living anion chain end of oligomeric 2-phenyl1,3-butadienyllithium,” Polym. J., 11, 937–945 (1979).Google Scholar
  120. 120.
    Y. Tsuji, T. Suzuki, Y. Watanabe, and Y. Takegami, “Active species in anionic polymerization of phenylbutadienes. Reactivity of model anions,” Polym. J., 13, 1099–1110 (1981).Google Scholar
  121. 121.
    K. F. Elgert and W. Ritter, “Struckurbestimmung eines 1,4Poly(1,3-pentadien)s durch 13C-NMR-Spektroskopie,” Makromol. Chem., 177, 2021–2030 (1976).Google Scholar
  122. 122.
    P. Aubert, J. Sledz, F. Shué, and J. Prud’homme, Etude structurale du poly(pentadiéne-1,3) par RMN du proton à 100 et 220 MHz,“ Eur. Polym. J., 16, 361–369 (1980).Google Scholar
  123. 123.
    D. H. O’Brien, A. J. Hart, and C. R. Russel, “Carbon-13 magnetic resonance of allyl, pentadienyl and arylmethyl carbanions. Empirical calculations of u-electron densities,” J. Am. Chem. Soc., 97, 4410–4412 (1975).Google Scholar
  124. 124.
    Y. Ysuji, T. Suzuki, Y. Watanabe, and Y. Takegami, “Anionic polymerization of 1-(2-methoxyphenyl)-1,3-butadiene and 1-(4methoxyphenyl)-1,3-butadiene. Microstructure of polymers and characterization of living anion chain ends,” Polym. J., 13, 651–656 (1981).Google Scholar
  125. 125.
    J. E. Bartmess, W. J. Hehre, R. T. McIver, and L. E. Overman, “Gas phase acidities of 2-butenes. Regarding the use of organometallics as models of free anions,” J. Am. Chem. Soc., 99, 1976–1977 (1977).Google Scholar
  126. 126.
    M. J. S. Dewar and D. J. Nelson, “Ground states of molecules. 60. A MINDO study of conformations of crotyl anion and a diaza analogue, of their BeH derivatives and of the interconversion of cyclopropyl anion and allyl anion,” J. Org. Chem., 47, 2614–2618 (1982).Google Scholar
  127. 127.
    J. C. Brosse, Z. A. Biu Maidung, and J. C. Soutif, “Contribution à l’étude de la métallation de structure polyisoprène,” Makromol. Chem., 183, 123–129 (1982).Google Scholar
  128. 128.
    R. P. Burford, “Polymerization of butadiene using Ziegler—Natta catalysts — recent developments,” J. Macromol. Sci., Chem., A17, 123–139 (1982).Google Scholar
  129. 129.
    B. A. Dolgoplosk, “Organometallic catalysis in stereospecific polymerization and the nature of the active centers,” Usp. Khim., 46, 2027–2065 (1977).Google Scholar
  130. 130.
    B. A. Dolgoplosk and E. I. Tinyakova, “The nature of the active centers and the mechanism of coordination polymerization. I. The nature of the active centers in the stereospecific polymerization of dienes and the mechanism of stereoregulation,” Vysokomol. Soedin., A19, 2441–2463 (1977).Google Scholar
  131. 131.
    M. I. Lobach and V. A. Kormer, “The introduction of diene hydrocarbons on transition-metal—ligand bonds,” Usp. Khim., 48, 1416–1447 (1979).Google Scholar
  132. 132.
    H. G. Marina, Yu. B. Monakov, S. R. Rafikov, and B. I. Ponomarenko, “The connection between the components of Ziegler systems which contain titanium and the mechanism of stereo-regulation in the polymerization of dienes,” Usp. Khim., 52, 733–753 (1983).Google Scholar

Copyright information

© Consultants Bureau, New York 1986

Authors and Affiliations

  • B. L. Erusalimskii
    • 1
  1. 1.Institute of Macromolecular CompoundsAcademy of Sciences of the USSRLeningradUSSR

Personalised recommendations