The Reactivity of Active Sites and Monomers in Homogeneous Ionic Systems

  • B. L. Erusalimskii
Part of the Macromolecular Compounds book series (MMCO)


The problem of the reactivity of initiators of growing chains, and in particular of monomers, is treated from one or another point of view in all the general works and in a considerable number of original papers on ionic polymerization. In this chapter an attempt is made to determine the progress which has been made in modern concepts in this field.


Lithium Atom Anionic Polymerization Cationic Polymerization Growth Reaction Ionic Polymerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. L. Erusalimskii, “Structure and reactivity of anionic active centers,” J. Polym. Sci., Polym. Symp., 62, 29–50 (1978).Google Scholar
  2. 2.
    B. J. Wakefield, The Chemistry of Organolithium Compounds, Pergamon Press, New York (1974).Google Scholar
  3. 3.
    V. N.Zgonnik, E. Yu. Melenevskaya, and B. L. Erusalimskii, “The study of active centers in anionic polymerization using spectroscopic and quantum-chemical methods,” Usp. Khim., 47, 1479–1503 (1978).Google Scholar
  4. 4.
    A. Streitwieser, Jr., J. A. Williams, S. Alexandratos, and J. M. McKelvey, “Ab initio SCF-MO calculations of methyllithium and related systems. Absence of the covalent character in the C—Li bond,” J. Am. Chem. Soc., 98, 4778–4784 (1976).Google Scholar
  5. 5.
    J. D. Dill, P. v. R. Schleyer, J. S. Binkley, and J. A. Pople, “Molecular-orbital theory of the electronic structure of molecules. 34. Structure and energies of small compounds containing lithium or beryllium. Ionic, multicenter, and coordinate bonding,” J. Am. Chem. Soc., 99, 6169–6173 (1977).Google Scholar
  6. 6.
    T. Clark, J. Chandrasekhar, and P. v. R. Schlery, “7Li-13C NMR coupling constants and the nature of the carbon—lithium bond: INDO MO calculations,” J. Chem. Soc., Chem. Commun., 671–673 (1980).Google Scholar
  7. 7.
    G. D. Graham, D. S. Maryninch, and W. N. Lipscomb, “Effects of basic set and configuration interaction on the electronic structure of CH3Li with comments on the nature of the C—Li bond,” J. Am. Chem. Soc., 102, 4572–4578 (1980).Google Scholar
  8. 8.
    G. D. Graham, S. Richtmeister, and D. A. Dixon, “Electronic structure of the alkvllithium clusters (CH3Li)n (n = 1–6) and (C2H5Li)n (n = 1–2),” J. Am. Chem. Soc., 102, 5759–5766 (1980).Google Scholar
  9. 9.
    M. Morton and L. J. Fetters, “Homogeneous anionic polymerization. V. Association phenomena in organolithium polymerization,” J. Polym. Sci., A2, 3311–3326 (1964).Google Scholar
  10. 10.
    R. Ohlinger, “Kinetischer Untersuchungen der mit Lithium-organischen Washstumskatalysatoren initiierten Copolymerisation von Butadien und Styrol mit dem Ziel der Darstellung von statistischen Copolymeren mit bestimmter Butadien-StyrolZusammensetzung,” Dissertation, Hamburg (1974).Google Scholar
  11. 11.
    V. V. Shamanin, E. Yu. Melenevskaya, and V. N. Zgonnik, “The influence of the concentration of growing chains on the polymerization rate and the microstructure of the polymer formed in the polybutadienyllithium—butadiene—aliphatic hydrocarbon system,” Acta Polym., 33, 175–181 (1982).Google Scholar
  12. 12.
    A. Hernandez, J. Semel, H.-Ch. Broeker, H. G. Zachmann, and H. Sinn, “The determination of the degree of association of polyisoprenyllithium in heptane,” Makromol. Chem. Rapid Commun., 1, 75–77 (1980).Google Scholar
  13. 13.
    S. Bywater, “The preparation and properties of star-branched polymers,” Adv. Polym. Sci., 30, 89–116 (1979).Google Scholar
  14. 14.
    K. Matsuzaki, Y. Shinohara, and T. Kendai, “Nuclear magnetic resonance studies on polymer carbanions. 1. Living polystyrene and its model compounds,” Makromol. Chem., 181, 1923–1934 (1980).Google Scholar
  15. 15.
    S. Dumas, B. Marti, J. Sledz, and F. Shué, “The influence of N,N,N’,N’-tetramethylethylenediamine on the anionic polymerization of isoprene in cyclohexane,” J. Polym. Sci., B16, 81–86 (1978).Google Scholar
  16. 16.
    W. Gebert, J. Hinz, and H. Sinn, “Umlagerungen bei der durch Lithiumbutyl initiierten Polyreaktion der Diene Isopren und Butadien,” Makromol. Chem., 144, 97–115 (1971).Google Scholar
  17. 17.
    E. Yu. Melenevskaya, V. N. Zgonnik, V. M. Denisov, E. R. Dolinskaya, and K. K. Kalnin’sh, “The nature of the active centers in the copolymerization of styrene with butadiene initiated by an n-butyllithium—tetramethylethylenediamine complex,” Vysokomol. Soedin., A21, 2008–2016 (1979).Google Scholar
  18. 18.
    L. V. Vinogradova, N. I. Nikolaev, and V. N. Zgonnik, “The nature and reactivity of the active centers in the system butadiene—n-butyllithium—tetramethylethylenediamine—hydrocarbon medium,” Vysokomol. Soedin., A18, 1756–1761 (1976).Google Scholar
  19. 19.
    L. V. Vinogradova, N. I. Nikolaev, V. N. Zgonnik, and B. L. Erusalimskii, “Forms of existence and relative activity of polybutadienyllithium in the polymerization of butadiene,” Eur. Polym. J., 19, 617–620 (1983).Google Scholar
  20. 20.
    A. A. Davidyan, N. I. Nikolaev, V. N. Zgonnik, and K. K. Kalnin’sh, “The reactivity and physicochemical features of the active centers in the system isoprene—butyllithium—tetramethylethylenediamine—hexane,” Vysokomol. Soedin., B17, 586–590 (1975).Google Scholar
  21. 21.
    A. A. Davidyan, N. I. Nikolaev, V. N. Zgonnik, and V. I. Petrova, “The reactivity and physicochemical features of the active centers in the system isoprene—oligoisoprenyllithiumdimethoxyethane—hexane,” Vysokomol. Soedin., A18, 2004–2010 (1976).Google Scholar
  22. 22.
    M. Morton, L. Fetters, and E. Bostick, “Mechanisms of homogeneous anionic polymerization by alkyllithium initiators,” J. Polym. Sci., Cl, 311–323 (1963).Google Scholar
  23. 23.
    S. Bywater, “Anionic polymerization,” Adv. Polym. Sci., 4, 66–110 (1965).Google Scholar
  24. 24.
    A. A. Davidyan, “The reactivity and physicochemical features of the active centers in the system isoprene—alkenyllithiumelectron donor,” Dissertation, Inst. Vyskomol. Soedin. Akad. Nauk SSSR, Leningrad (1977).Google Scholar
  25. 25.
    Yu. E. Eizner and B. L. Erusalimskii, The Electronic Aspect of Polymerization Reactions [in Russian], Nauka, Leningrad (1976).Google Scholar
  26. 26.
    H. F. Ebel, “Structure and reactivity of carbanions and carbanioid compounds,” Fortschr. Chem. Forsch., 12, 387–439 (1969).Google Scholar
  27. 27.
    I. G. Krasnosel’skaya (Krasnoselskaya) and B. L. Erusalimskii (Erussalimsky). Erusalimskii (Erussalimsky), “Sequences of complex formation in the polymerization processes induced by organomagnesium compounds,” Eur. Polym. J., 13, 775–781 (1977).Google Scholar
  28. 28.
    B. L. Erusalimskii, “Overall and individual effects in systems including organolithium compounds,” Makromol. Chem., 182, 911–915 (1981).Google Scholar
  29. 29.
    B. L. Novoselova and B. L. Erusalimskii, “Mechanisms der durch Lithiuminitiatoren angeregten Polymerisation von Acrylnitril,” Faserforsch. Textiltech., 26, 293–300 (1975).Google Scholar
  30. 30.
    K. Hatada, T. Kitayama, K. Fumikawa, K. Ohta, and H. Yuki, “Studies on the anionic polymerization of methyl methacrylate initiated with butyllithium in toluene using perdeuterated monomer,” in: ACS Symposium Series 166, J. E. McGrath (editor), 327–341 (1981).Google Scholar
  31. 31.
    A. Davidyan (Davidjan), N. I. Nikolaev, V. N. Zgonnik (Sgonnik), B. G. Belen’kii (Belenkii), V. V. Nesterov, V. D. Krasikov (Krasikow), and B. L. Erusalimskii (Erussalimsky). Erusalimskii (Erussalimsky), “Subkatalystische Effekte im System Isopren—OligoisoprenyllithiumN,N,N’,N’-Tetramethylethylendiamin. 2. Umsatzabhangigkeiten der Molekulargewichtsverteilung and Mikrostrucktur der Polymere,” Makromol. Chem., 179, 2155–2160 (1978).Google Scholar
  32. 32.
    B. L. Erusalimskii, A. A. Davidyan, N. I. Nikolaev, V. N. Zgonnik, V. G. Belen’kii, V. D. Krasikov, V. V. Nesterov, and M. L. Kononenko, “Polymerization in the butadiene—styrene system under the action of organolithium active centers with sub-catalytic quantities of tetramethylethylenediamine,” Vysokomol. Soedin., A25, 2121–2125 (1983).Google Scholar
  33. 33.
    I. M. Panayotov and G. Heublein, “Cationic polymerization in the presence of 7-electron acceptors,” J. Macromol. Sci., Chem., A11, 2065–2086 (1977).Google Scholar
  34. 34.
    C. Reichardt, “Solvent effects in organic chemistry,” in: Monographs in Modern Chemistry, H. F. Ebel (editor), Vol. 3, Verlag Chemie, Weinheim (1979), pp. 1–355.Google Scholar
  35. 35.
    T. Shinohara, J. Smid, and M. Szwarc, “Effect of solvation of ion pairs,” J. Am. Chem. Soc., 90, 2175–2177 (1968).Google Scholar
  36. 36.
    H. Hirohara and N. Ise, “On the growing active centers and their reactivities in ”living“ anionic polymerization of styrene and its derivatives,” J. Polym. Sci. D., Macromol. Rev., 6, 295–336 (1972).Google Scholar
  37. 37.
    A. Gandini and H. Cheradamé, “Cationic polymerization. Initiation with alkenyl monomers,” Adv. Polym. Sci., 34/35, 1–289 (1979).Google Scholar
  38. 38.
    J. P. Lorimer and D. C. Pepper, “A stopped-flow study of the ”free-ion“ polymerization of styrene by HC1O,, in CH2C12 at low temperature,” Int. Symp. on Cationic Polymerization, Rouen (1973), prepr. C23.Google Scholar
  39. 39.
    M. Sawamoto, T. Masuda, and T. Higashimura,“ Cationic polymerization of styrene by protic acids and their derivatives. 2. Two propagating species in the polymerization by CF3SO3H,” Makromol. Chem., 177, 2995–3007 (1976).Google Scholar
  40. 40.
    M. Sawamoto and H.Higashimura, “Stopped-flow study of the cationic polymerization of p-methoxystyrene. Evidence for the multiplicity of the propagation species,” Macromolecules, 11, 502–504 (1978).Google Scholar
  41. 41.
    S. Penczek, P. Kubisa, and K. Matyjaszewski, “Cationic ring-opening polymerization,” Adv. Polym. Sci., 37, 1–149 (1980).Google Scholar
  42. 42.
    S. Penczek and R. Szymansky, “The carbenium—onium ion equilibrium in cationic polymerization,” Polym. J., 12, 617–628 (1980).Google Scholar
  43. 43.
    K. Matyjaszewski, S. Slomkowski, and S. Penczek, “Kinetics and mechanism of the cationic polymerization of tetrahydrofuran in solution. THF—CH2C12 and THE—CH2C12—CH3NO2 systems,” J. Polym. Sci., Chem. Ed., 17, 2413–2422 (1979).Google Scholar
  44. 44.
    K. Matyjaszewski, T. Diem, and S. Penczek, “Rate constants of propagation of THF on macroesters and macroions,” Makromol. Chem., 180, 1827–1829 (1979).Google Scholar
  45. 45.
    R. Busson and M. van Beylen, “The Hammett relation in anionic polymerization. Reaction of polystyryl alkali salts with di-substituted 1,1-diphenylethylenes,” Macromolecules, 10, 3120–3136 (1977).Google Scholar
  46. 46.
    A. A. Arest-Yakubovich, “Alkaline earth metals as initiators of the anionic polymerization of unsaturated monomers,” Usp. Khim., 1141–1167 (1981).Google Scholar
  47. 47.
    B. I. Nakhmanovich, V. A. Korolev, and A. A. Arest-Yakubovich, “The kinetics of the polymerization of butadiene and styrene under the action of bis-triphenylmethylbarium in THF,” Vysokomol. Soedin., A18, 1480–1485 (1976).Google Scholar
  48. 48.
    A. H. E. Müller, “The present view of the anionic polymerization of methyl methacrylate and related esters in polar solvents,” ACS Symposium Series 166, J. E. McGrath (editor), 441–461 (1981).Google Scholar
  49. 49.
    R. Craft, A. H. E. Müller, V. Warzelhan, H. Höcker, and G. V. Schulz, “On the structure of propagating species in the anionic polymerization of methyl methacrylate. Kinetic investigation in tetrahydrofuran using monofunctional initiators,” Macromolecules, 11, 1093–1096 (1978).Google Scholar
  50. 50.
    R. Craft, A7-H. E. Müller, H. Höcker, and G. V. Schulz, “Kinetics of anionic polymerization of methyl methacrylate in 1,2-dimethoxyethane,” Makromol. Chem. Rapid Commun., 1, 363–368 (1980).Google Scholar
  51. 51.
    C. Johann and A. H. E. Müller, “Kinetics of anionic polymerization of methyl methacrylate using cryptated sodium counterions in tetrahydrofuran,” Makromol. Chem. Rapid Commun., 2, 687–691 (1981).Google Scholar
  52. 52.
    H. Jeuk and A. H. E. Müller, “Kinetics of the anionic polymerization of methyl methacrylate in tetrahydrofuran using lithium and potassium as counterions,” Makromol. Chem. Rapid Commun., 3, 121–125 (1982).Google Scholar
  53. 53.
    S. Murahashi, H. Yuki, H. Hatada, and T. Okata, “Polymerization of methyl methacrylate by diethylaluminumdiphenylamide. II. Initiation and stereoregulation in the polymerization reaction,” Chem. High Polym., 24, 309–317 (1967).Google Scholar
  54. 54.
    E. V. Milovskaya, M. N. Makarychev-Mikhailov, and E. P. Skvortsevich, “Organoaluminum compounds as initiators in the anionic polymerization of methacrylates,” Vysokomol. Soedin., A17, 1217–1222 (1975).Google Scholar
  55. 55.
    E. P. Skvortsevich, E. L. Kopp, and E. B. Milovskaya, “A1R32,2-dipyridyl systems as initiators in anionic polymerization,” Vysokomol. Soedin., A19, 1736–1743 (1977).Google Scholar
  56. 56.
    E. B. Milovskaya and Yu. E. Eizner, “Electronic structure, conformation, and reactivity of the active centers of anionic polymerization with an aluminum counterion,” Eur. Polym. J., 15, 889–893 (1979).Google Scholar
  57. 57.
    E. P. Skvortsevich, E. L. Kopp, V. V. Mazurek, and E. B. Milovskaya, “The kinetics of the polymerization of methyl methacrylate under the action of triethylaluminum-2,2’-dipyridyl system,” Vysokomol. Soedin., A21, 1554–1561 (1979).Google Scholar
  58. 58.
    E. L. Kopp, E. P. Skvortsevich, V. M. Denisov, A. I. Kol’tsov, and E. B. Milovskaya, “The catalytic activity of A1R3–2,2-dipyridyl systems,” Izv. Akad. Nauk SSSR, Ser. Khim., No. 9, 2055–2058 (1977).Google Scholar
  59. 59.
    I. G. Krasnosel’skaya, B. L. Erusalimskii, and G. N. Novinskaya, “The effect of magnesium alkoxides on polymerization in polar monomer—organomagnesium initiator systems,” Vysokomol. Soedin., A16, 1730–1735 (1974).Google Scholar
  60. 60.
    V. V. Mazurek, Polymerization under the Action of Transition Metals [in Russian], Nauka, Leningrad (1974).Google Scholar
  61. 61.
    N. A. Shirokov and V. V. Mazurek, “The tris -allylchromiumpyridine system as an initiator of the polymerization of methylmethacrylate,” Vysokomol. Soedin., A18, 1687–1690 (1976).Google Scholar
  62. 62.
    L. A. Fedorova, V. V. Mazurek, N. A. Shirokov, and L. D. Turkova, “The nature and specificity of the active centers in the tris-ir-allylchromium—pyridine—acrylonitrile system,” React. Kinet. Catal. Lett., 15, 361–365 (1980).Google Scholar
  63. 63.
    L. A. Fedorova, V. V. Mazurek, N. A. Shirokov, and L. D. Turkova, “Systems based on tris-i-allylchromium as initiators in the polymerization of acrylonitrile,” Vysokomol. Soedin., A23, 1749–1754 (1981).Google Scholar
  64. 64.
    L. A. Fedorova, V. V. Mazurek, N. A. Shirokov, and L. D. Turkova, “The tris-r-allylchromium-2,2-dipyridyl system as an initiator of acrylonitrile polymerization,” React. Kinet. Catal. Lett., 23, 343–347 (1983).Google Scholar
  65. 65.
    W. Obrecht and P. H. Plesch, “The polymerization of styrene by trifluoroacetic acid,” Makromol. Chem., 182, 1459–1473 (1981).Google Scholar
  66. 66.
    K. Mejzlik and M. Lesna, “A comparison of the methods used to determine the active centers in the polymerization of Ziegler-Natta olefins,” V Int. Mikrosymp. Fortschr. in Ionenpolymerization, Prague (1982), prepr. 50.Google Scholar
  67. 67.
    V. A. Zakharov, T. D. Bukatov, and Yu. I. Ermakov, “A mechanism of the catalytic polymerization of olefins based on data on the number of active centers and rate constants of the individual stages,” Usp. Khim., 49, 2213–2240 (1980).Google Scholar
  68. 68.
    H. Franz, H. Meyer, and K.-H. Reichert, “An attempt to determine the concentration of active sites in supported Ziegler-Natta catalysts,” Polymer, 22, 226–230 (1981).Google Scholar
  69. 69.
    J. Herwig, “Olefinpolymerisation mit löslischen insbesondere halogenfreien Ziegler Katalysatoren unter Verwendung von oligomerem Methylalumoxan als Aluminiumalkylkomponente,”Dissertation, Hamburg (1979).Google Scholar
  70. 70.
    J. Pein, “Untersuchungen von Systemen aus Cyclopentadienylzircon(IV)- Verbindungen mit n-Propylaluminium-Verbindungen,” Dissertation, Hamburg (1980).Google Scholar
  71. 71.
    A. Andresen, “UV-Spektroskopische Untersuchungen an homogen Ziegler-Natta Katalysatoren mit Methylalumoxan als Katalysatorkomponente,” Dissertation, Hamburg (1980).Google Scholar
  72. 72.
    H. Sinn, W. Kaminsky, H.-J. Vollmer, and R. Woldt, “’Lebende Polymere’ bei Ziegler Katalysatoren extremer Productivität,” Angew. Chem., 92, 396, 401–402 (1980).Google Scholar
  73. 73.
    H. Sinn and W. Kaminsky, “Ziegler-Natta catalysis,” Adv. Organomet. Chem., 16, 99–149 (1980).Google Scholar
  74. 74.
    W. Kaminsky, H. Sinn, and H.-J. Vollmer, “Extrem verzerrte Bindungswinkel bei organozirkonium Verbindungen, die gegen Ethylen aktiv sind,” Angew. Chem., 88, 688–689 (1976).Google Scholar
  75. 75.
    J. Boor, Jr., Zielger-Natta Catalysts and Polymerizations, Academic Press, New York (1979).Google Scholar
  76. 76.
    V. E. Lvovsky, E. A. Fushman, and F. S. Dyachkovsky, “A study of the structure and reactivity of the complexes of cyclopentadienyltitanium derivatives with alkylaluminum halides,” J. Mol. Catal., 10, 43–56 (1981).Google Scholar
  77. 77.
    J. Cihlar, J. Mejzlik, and O. Hamrik, “The influence of water on ethylene polymerization catalyzed by titanocene systems,” Makromol. Chem., 179, 2333–2358 (1978).Google Scholar
  78. 78.
    K. H. Reichert and K. R. Meyer, “Zur Kinetik der Niederdruck-polymerisation von Athylen mit löslischen Ziegler-Katalysatoren,” Makromol. Chem., 169, 163–176 (1973).Google Scholar
  79. 79.
    K. J. Toelle, J. Smid, and M. Szwarc, “The absolute rate constants of propagation of the free living polystyrene ions and the dissociation constant of the %S”,Na ion pair,“ J. Polym. Sci., B3, 1037–1041 (1965).Google Scholar
  80. 80.
    H. Hostalka and G. V. Szwarc,“ Some remarks on the comments by Toelle, Smid, and Szwarc,” J. Polym. Sci., B3, 1043–1044 (1965).Google Scholar
  81. 81.
    B. J. Schmitt and G. V. Schulz, “Über zwei formen des Initiators Na-Naphthalin und die Bestimmung der ‘lebenden’ Kettenenden in der anionischen Polymerisation,” Makromol. Chem., 121, 184–204 (1969).Google Scholar
  82. 82.
    P. H. Plesch, “Propagation rate constants in cationic polymerization,” Adv. Polym. Sci., 8, 137–154 (1971).Google Scholar
  83. 83.
    K. S. Kazanskii, A. A. Solov’yanov, and S. G. Entelis, “The nature of the active centers and the mechanism of the anionic polymerization of epoxides,” in: Advances in Ionic Polymerization [in Russian], Warsaw (1975), pp. 77–87.Google Scholar
  84. 84.
    P. Sigwalt, “The mechanism and kinetics of anionic polymerization of episulfides,” IUPAC Int. Symp. on Macromol. Chem., Budapest (1969), pp. 251–280.Google Scholar
  85. 85.
    S. Penczek, P. Kubisa, and K. Matyjaszewski, “Cationic ring-opening polymerization,” Adv. Polym. Sci., 37, 1–149 (1980).Google Scholar
  86. 86.
    A. A. Korotkov and A. F. Podolskii, The Catalytic Polymerization of Vinyl Monomers [in Russian], Nauka, Leningrad (1973).Google Scholar
  87. 87.
    F. S. Dainton, G. A. Harpell, and K. J. Ivin, “The kinetics of anionic polymerization of a-methylstyrene in tetrahydrofuran and dioxane,” Eur. Polym. Sci., 5, 395–403 (1969).Google Scholar
  88. 88.
    L. V. Vinogradova, V. N. Zgonnik (Sgonnik), N. I. Nikolaev, and E. P. Vetchinova. Vetchinova, “The polymerization of butadiene by polybutadienyllithium in the presence of tetrahydrofuran,” Eur. Polym. J., 16, 799–801 (1980).Google Scholar
  89. 89.
    S. Bywater and W. J. Worsfold, “Anionic polymerization of isoprene. Ion and ion pairs contribution to the polymerization in THF,” Can. J. Chem., 45, 1821–1824 (1967).Google Scholar
  90. 90.
    G. Helary and M. Fontanille, “The activation of styrene by crown tertiary amines in cyclohexane,” Polym. Bull., 3, 159–165 (1981).Google Scholar
  91. 91.
    T. Shimomura, J. Smid, and M. Szwarc, “Reactivities of contact and solvent-separated ion pairs. Anionic polymerization of styrene in dimethoxyethane,” J. Am. Chem. Soc., 89, 5743–5749 (1969).Google Scholar
  92. 92.
    M. Szwarc, Carbanions, Living Polymers and Electron Transfer Processes, Interscience, New York (1968).Google Scholar
  93. 93.
    M. Szwarc (editor), Ions and Ion Pairs in Organic Reactions, Interscience, New York (1972).Google Scholar
  94. 94.
    B. L. Erusalimskii, Ionic Polymerization of Polar Monomers [in Russian], Nauka, Leningrad (1970).Google Scholar
  95. 95.
    B. L. Erusalimskii, “über einige Besonderheiten der anionischen Polymerisation polarer Monomerer,” Plaste Kautsch, 15, 788–792 (1968).Google Scholar
  96. 96.
    G. E. Ham (editor), Copolymerization, Interscience, New York (1964).Google Scholar
  97. 97.
    G. E. Ham, “Ionic copolymerization,” J. Macromol. Sci., Chem., A11, 227–230 (1970).Google Scholar
  98. 98.
    P. Kubisa and S. Penczek, “Penultimate unit influence in the cationic copolymerization of tetrahydrofuran with oxetanes,” J. Macromol. Sci., Chem., A7, 1509–1524 (1973).Google Scholar
  99. 99.
    R. Ohlinger and F. Bandermann, “Kinetics of the propagation reaction of butadiene—styrene copolymerization with organo-lithium compounds,” Makromol. Chem., 181, 1935–1947 1980 ).Google Scholar
  100. 100.
    V. N. Zgonnik, N. I. Nikolaev, E. Yu. Shadrina, and L. V. Níkonova, “Copolymerization of butadiene with styrene on butyllithium complexes with tetramethylethylenediamine and 2,3-dimethoxybutane,” Vysokomol. Soedin., B15, 684–686 0973 ).Google Scholar
  101. 101.
    M. M. F. Al-Jarrah and R. N. Young, “Anionic copolymerization of vinylbiphenyl: kinetics of a system having spectroscopically distinguishable ion pairs,” 26th Int. Symp. on Macromolecules, Mainz (1979), Vol. 1, pp. 373–376.Google Scholar
  102. 102.
    S. R. Rafikov, Z. M. Sabírova, O. A. Ponomarev, G. S. Lomskii, Yu. B. Monakov, and K. S. Minsker, “The connection of the stereospecific effectswiththe nature of the counterion in the anionic polymerization of dienes,” Dokl. Akad. Nauk SSSR, 259, 1139–1143 (1981).Google Scholar
  103. 103.
    T. Higashimura, J. Masamoto, S. Okamura, and T. Yonezawa, “Cationic polymerization of 1,2-dialkoxyethylenes,” Polym. J., 2, 154–160 (1972).Google Scholar
  104. 104.
    T. Higashimura, K. Kawamura, and T. Masusada, “Cationic polymerization of a,ß-disubstituted olefins. Part 17. Effect of polymerization conditions on the reativity of alkenyl ethers relative to vinyl ethers,” J. Polym. Sci., Polym. Chem. Ed., 11, 713–722 (1973).Google Scholar
  105. 105.
    T. Higashimara and K. Yamamoto, “Cationic polymerization of a,13-disubstituted ethylenes. Investigation of the propagation reaction,” Makromol. Chem., 175, 1139–1156 (1974).Google Scholar
  106. 106.
    Yu. E. Eizner and B. L. Erusalimskii, “The electron structure of the active centers of a linear oxonium ionic type,” Vysokomol. Soedin., Al2, 1614–1620 (1970).Google Scholar
  107. 107.
    T. Kelen, P. Tudos, B. Turesâny, and J. P. Kennedy, “An analysis of the linear methods for determining copolymerization reactivity ratios. IV. A comprehensive and critical reexamination of carbocationic copolymerization data,” J. Polym. Sci., Polym. Chem. Ed., 15, 3047–3074 (1977).Google Scholar
  108. 108.
    I. Artamonova, S. Klenin, A. Troitskaya, and B. Erusalimskii (Erussalimsky). Erusalimskii (Erussalimsky), “Zum mechanismus der anionischen Copolymerisation polarer ungesättigter Monomere,” Makromol. Chem., 175, 2329–2338 (1974).Google Scholar
  109. 109.
    I. L. Artamonova, V. V. Mazurek, and B. L. Erusalimskii, “The influence of temperature on the composition of copolymers formed in the acrylonitrile-methylacrylate—butyllithium system,” Vysokomol. Soedin., B19, 179–181 (1977).Google Scholar
  110. 110.
    I. L. Artamonova, A. V. Novoselova, S. I. Vinogradova, B. L. Erusalimskii, H.-J. Adler, and W. Berger, “Copolymerization von Acrylnitril mit Acrylaten mittels Lithiumalkoxiden,” Faserforsch. Textiltech., 28, 511–514 (1977).Google Scholar
  111. 111.
    K. Brzezinska, K. Matyjaszewski, and S. Penczek, “Macroion pairs and macroions in the kinetics of the polymerization of oxepane,” Makromol. Chem., 179, 2387–2395 (1978).Google Scholar
  112. 112.
    G. L. Collins, R. K. Greene, F. M. Berardinelli, and W. H. Ray, “Fundamental considerations on the mechanism of copolymerization of trioxane with ethylene oxide initiated with boron trifluoride dibutyl etherate,” J. Polym. Sci., Polym. Chem. Ed., 19, 1597–1607 (1981).Google Scholar
  113. 113.
    V. Jaacks, “Anomalien bei der kationischen Copolymerisation von Trioxan, 32. Mitt. über Polyoxymethylene,” Makromol. Chem., 101, 33–57 (1967).Google Scholar
  114. 114.
    W. Kern and V. Jaacks, “Some kinetic effects in polymerization of 1,3,5-trioxane,” J. Polym. Sci., 48, 399–404 (1970).Google Scholar
  115. 115.
    M. Okada, S. Kozawa, and Y. Yamashita, “Kinetic studies on the polymerization of 1,3-oxepane initiated with triethyloxonium tetrafluoroborate,” Makromol.Chem., 127, 271–281 (1969).Google Scholar
  116. 116.
    N. M. Geller, Yu. E. Eizner, and V. A. Kropachev, “Change in electron structure of cyclic oxides during their interaction with electron acceptors. Quantum chemical investigation,” Acta Polym., 32, 144–149 (1981).Google Scholar
  117. 117.
    N. M. Geller, Yu. E. Eizner, and V. A. Kropachev, “The effect of substituents on the electronic structure of the complexes of cyclic oxides with an electron acceptor. Quantum-chemical investigation,” Acta Polym., 34, 584–588 (1983).Google Scholar
  118. 118.
    E. G. Furman and A. P. Meleshevich, “A study of the influence of the nature of the substituent on the electronic state of the epoxide ring using the CNDO/2 method,” Teor. Eksp. Khim., 13, 328–333 (1977).Google Scholar

Copyright information

© Consultants Bureau, New York 1986

Authors and Affiliations

  • B. L. Erusalimskii
    • 1
  1. 1.Institute of Macromolecular CompoundsAcademy of Sciences of the USSRLeningradUSSR

Personalised recommendations