General Questions on the Problem of Multicenteredness

  • B. L. Erusalimskii
Part of the Macromolecular Compounds book series (MMCO)


The parallel or alternating course of polymerization under the action of various active sites in systems of the ionic type has been the subject of discussion in one way or another for about a quarter of a century. Without going into the history of the problem, we note that it is obvious that the phenomena which constitute the basis for the conclusions about the existence of agents which are distinguished for their kinetic and/or stereochemical features were discovered during anionic polymerization in polar media and in processes initiated by Ziegler-Natta catalysts. The number of actual systems, which in this respect proved to be analogous to those mentioned above, has increased considerably. This process continues today. Now it is considerably more difficult to find an example of an ionic system which may have been regarded as single centered, than to substantiate the fact that systems of this type have many active sites. On the other hand, the generality of the phenomenon which we examine in the present chapter has a formal character since the effect of the different active sites may result from very different causes. Apart from this feature concerning the genesis of the required species, there is also another important question, i.e., whether mutual transitions between individual species takes place or not. No less important for the final result is the relative activity of each of the sites which are functioning in a given system because this is one of the factors which determine their contribution to the total effect. Special attention is devoted to this point later on.


Anionic Polymerization Cationic Polymerization Growth Reaction Ionic Polymerization Final Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Yu. Melenevskaya, “The structure and reactivity of organolithium active centers in the polymerization of butadiene and styrene,” Dissertation, Leningrad (1980).Google Scholar
  2. 2.
    R. Ohlinger and F. Bandermann, “Kinetics of the propagation reaction of butadiene—styrene copolymerization with organolithium compounds,” Makromol. Chem., 181, 1935–1947 (1980).CrossRefGoogle Scholar
  3. 3.
    B. L. Erusalimskii and A. V. Novoselova, “Mechanismus der durch Lithiuminitiatoren angeregten Polymerization von Acrylnitril,” Faserforsch. Textiltech., 26, 293–300 (1975).Google Scholar
  4. 4.
    B. L. Erusalimskii, “Das Mehrzentrenproblem in ionischen Polymerizationsprozessen,” Acta Polym., 34, 667–673 (1983).CrossRefGoogle Scholar
  5. 5.
    B. L. Erusalimskii, I. G. Krasnosel’skaya, V. N. Krasulina, A. V. Novoselova, and E. V. Zhashtsherinskii, “Mechanisms of the side reactions in the anionic systems of low efficiency of initiation,” Eur. Polym. J., 6, 1391–1396 (1970).CrossRefGoogle Scholar
  6. 6.
    L. Reich and A. Schindler, Polymerization by Organometallic Compounds, Interscience, New York (1966).Google Scholar
  7. 7.
    B. L. Erusalimskii, E. Yu. Melenevskaya, and V. N. Zgonnik, “Modern views on the stereospecificity of anionic active centers,” Acta Polym., 32, 183–195 (1981).CrossRefGoogle Scholar
  8. 8.
    B. L. Erusalimskii, “Uber einige Besonderheiten der anionischen Polymerization polarer Monomerer,” Plaste Kautsch., 15, 788–792 (1968).Google Scholar
  9. 9.
    B. L. Erusalimskii and I. G. Krasnoselskaya, “Zum Mechanismus der Aktivierung der anionischen Polymerization polarer Monomerer durch Lewis-Basen,” Makromol. Chem., 123, 80–90 (1969).CrossRefGoogle Scholar
  10. 10.
    I. G. Krasnoselskaya, E. S. Gankina, B. G. Belen’kii, and B. L. Erusalimskii, “The polymerization of acrylonitrile underthe action of polystyryllithium,” Vysokomol. Soedin., A19, 999–1003 (1977).Google Scholar
  11. 11.
    W. Berger, Ch. Steinbrecher, H. J. Adler, I. G. Krasnosel’skaya (Krasnoselskaya), G. V. Lyubimova, and B. L. Erusalimskii,“Die anionisch initiierte Blockcopolymerisation von Vinylpyridinen mit Acrylnitril, ” Acta Polym., 34, 396–398 (1983).CrossRefGoogle Scholar
  12. 12.
    S. Slomkovskii and S. Sosnovskii, “The kinetics of macrocycle formation in the polymerization with c-caprolactams,” V. Int. Mikrosymp. Fortschr. Ionenpolym., Prague (1982), prepr. 70.Google Scholar
  13. 13.
    V. V. Shamanin, E. Yu. Melenevskaya, and V. N. Zgonnik, “Influence of the concentration of growing chains on the polymerization rate and the microstructure of the polymer formed in the polybutadienyllithium—butadiene—aliphatic hydrocarbon system,” Acta Polym., 33, 175–181 (1982).CrossRefGoogle Scholar
  14. 14.
    B.J. Schmitt and G. V. Schulz, “Uber zwei Formen des Initiators Na-Naphtalin und die Bestimmung der ‘lebenden’ Kettenenden in der anionischen Polymerisation,” Makromol. Chem., 121, 184–204 (1969).CrossRefGoogle Scholar
  15. 15.
    M. Sawamoto and H. Higashimura,“Stopped-flow study of the cationic polymerization of p-methoxystyrene. Evidence for the multiplicity of the propagation species, ” Macromolecules, 11, 501–504 (1978).CrossRefGoogle Scholar
  16. 16.
    R. T. M. Huang and J. F. Westlank, “Molecular-weight distribution in radiation-induced polymerization. III. y-Ray induced polymerization of styrene at low temperatures,” J. Polym. Sci., Al, 8, 49–61 (1970).CrossRefGoogle Scholar
  17. 17.
    M. Sawamoto, T. Masuda, and T. Higashimura, “Cationic polymerization of styrene by protic acids and their derivatives. 2. Two propagating species in the polymerization by CF3SO3H,” Makromol. Chem., 177, 2995–3007 (1976).CrossRefGoogle Scholar
  18. 18.
    B. G. Belenkii and E. S. Gankina, “Thin-layer chromatography of polymers,” J. Chromatogr., Chromatogr. Rev., 21, 13–90 (1977).Google Scholar
  19. 19.
    G. Glöckner, Polymercharacterisierung durch Flüssigkeitschromatographie, VEB Deutscher Verlag d. Wiss., Berlin (1980).Google Scholar
  20. 20.
    V. V. Nesterov, V. D. Krasikov, V. N. Zgonnik, E. Yu. Melenevskaya, I. V. Kosheleva, and B. G. Belen’kii, “Studies of block copolymers based on polystyrene and polybutadiene using gel permeation chromatography and ozonolysis,” Vysokomol. Soedin., A25, 2568–2574 (1983).Google Scholar
  21. 21.
    B. L. Erusalimskii, “Unresolved problems in ionic polymerization,” in: Advances in Ionic Polymerization [in Russian], Z. Jedlinsky (editor), Warsaw (1975), pp. 9–23.Google Scholar
  22. 22.
    A. F. Halasa, D. N. Schulz, D. P. Tate, and V. D. Mochel, “Organolithium catalysis of olefin and diene polymerization,” Adv. Organomet. Chem., 18, 55–97 (1980).CrossRefGoogle Scholar
  23. 23.
    A. Davidyan (Davidjan), N. I. Nikolaev, V. N. Zgonnik (Sgonnik), B. G. Belen’kii (Belenkii), V. V. Nesterov, V. D. Krasikov (Krasikow), and B. L. Erusalimskii (Erussalimsky). Erusalimskii (Erussalimsky), “Subkatalytische Effekte im System Isopren-OligoisoprenyllithiumN,N,N’N’-Tetramethylethylendiamin. 2. Umsatzabhangigkeiten der Molekulargewichtsverteilung und Mikrostruktur der Polymere,” Makromol. Chem., 179, 2155–2160 (1978).CrossRefGoogle Scholar
  24. 24.
    W. Gebert, J. Hinz, and H. Sinn, “Umlagerungen bei der durch Lithiumbutyl initiierten Polyreaktion der Diene Isopren und Butadien,” Makromol. Chem., 144, 97–115 (1971).CrossRefGoogle Scholar
  25. 25.
    O. F. Olaj, H. Rehmann, and J. W. Breitenbach, “Der Gegenion-Effekt beir der durch Perchlorsaüre initiierten Polymerization von Styrol,” Monatsh.Chem., 110, 1029–1043 (1979).CrossRefGoogle Scholar
  26. 26.
    V. V. Shamanin, “Molecular-weight distribution analysis of the mechanism of addition polymerization,” Acta Polym., 31, 353–356 (1980).CrossRefGoogle Scholar
  27. 27.
    S. Bywater and J. E. L. Roovers, “Polymerisation of isoprene by sec-butyllithium in hexane,” Macromolecules, 8, 251–254 (1975).CrossRefGoogle Scholar
  28. 28.
    N. V. Smirnova (Smirnowa), V. N. Zgonnik (Sgonnik), K. K. Kalnin’sh, and B. L. Erusalimskii (Erussalimsky), “über einige Besonderheiten der Polymerisation von 2,3-dimethylbutadien in durch lithiumorganische Verbindungen initiierten Prozessen, ” Makromol. Chem., 178, 773–790 (1977).CrossRefGoogle Scholar
  29. 29.
    V. N. Zgonnik, N. I. Nikolaev, E. Yu. Shadrina, and L. V. Nik- onova, “Copolymerization of butadiene with styrene on butyl- lithium complexes with tetramethylethylenediamine and 2,3- dimethoxybutane,” Vysokomol. Soedin., B15, 684–686 (1973).Google Scholar
  30. 30.
    B. L. Erusalimskii (Erussalimsky), B. G. Belen’kii (Belenkii), A. A. Davidyan (Davidjan), V. D. Krasikov, V. V. Nesterov, N. I. Nikolaev, V. N. Zgonnik (Sgonnik), and V. M. Sergutin, “Subcatalytic effects in the anionic polymerization processes,” 27th Int. Symp. on Macromolecules, Strasburg (1981), Vol. 1, pp. 182–185.Google Scholar
  31. 31.
    M. Schlosser and J. Hartmann, “2-Alkenyl anions and their surprising endo preference. Facile and extreme stereocontrol over carbon-carbon linking reactions with allyl-type organometallics,” J. Am. Chem. Soc., 98, 4674–4676 (1976).CrossRefGoogle Scholar
  32. 32.
    R. Ohlinger, “Kinetische Untersuchungen der mit Lithium-organischen Wachstumskatalysatoren initiierten Copolymerisation von Butadien und Styrol mit dem der Darstellung von statistischen Copolymeren mit bestimmter Butadien-StyrolZusammensetzung,” Dissertation, Hamburg (1974).Google Scholar

Copyright information

© Consultants Bureau, New York 1986

Authors and Affiliations

  • B. L. Erusalimskii
    • 1
  1. 1.Institute of Macromolecular CompoundsAcademy of Sciences of the USSRLeningradUSSR

Personalised recommendations